Authors: Abram Hindle Daniel M. German Michael W. Godfrey Richard C. Holt
Venue: 2009 IEEE 17th International Conference on Program Comprehension, pp. 30-39, 2009
Year: 2009
Abstract: Large software systems undergo significant evolution during their lifespan, yet often individual changes are not well documented. In this work, we seek to automatically classify large changes into various categories of maintenance tasks - corrective, adaptive, perfective, feature addition, and non-functional improvement - using machine learning techniques. In a previous paper, we found that many commits could be classified easily and reliably based solely on the manual analysis of the commit metadata and commit messages (i.e., without reference to the source code). Our extension is the automation of classification by training machine learners on features extracted from the commit metadata, such as the word distribution of a commit message, commit author, and modules modified. We validated the results of the learners via 10-fold cross validation, which achieved accuracies consistently above 50%, indicating good to fair results. We found that the identity of the author of a commit provided much information about the maintenance class of a commit, almost as much as the words of the commit message. This implies that for most large commits, the Source Control System (SCS) commit messages plus the commit author identity is enough information to accurately and automatically categorize the nature of the maintenance task.
BibTeX:
@inproceedings{abramhindle2009acolcimc,
author = "Abram Hindle and Daniel M. German and Michael W. Godfrey and Richard C. Holt",
title = "Automatic classication of large changes into maintenance categories",
year = "2009",
pages = "30-39",
booktitle = "Proceedings of 2009 IEEE 17th International Conference on Program Comprehension"
}
Plain Text:
Abram Hindle, Daniel M. German, Michael W. Godfrey, and Richard C. Holt, "Automatic classication of large changes into maintenance categories," 2009 IEEE 17th International Conference on Program Comprehension, pp. 30-39