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Abstract—Bug localization is the task of determining which source code entities are relevant to a bug report. Manual bug localization is
labor intensive, since developers must consider thousands of source code entities. Current research builds bug localization classifiers,
based on information retrieval models, to locate entities that are textually similar to the bug report. Current research, however, does
not consider the effect of classifier configuration, i.e., all the parameter values that specify the behavior of a classifier. As such, it is
unknown the effect of each parameter or which parameter values lead to the best performance. In this paper, we empirically investigate
the effectiveness of a large space of classifier configurations, 3,172 in total. Further, we introduce a framework for combining the results
of multiple classifier configurations, since classifier combination has shown promise in other domains. Through a detailed case study
on over 8,000 bug reports from three large-scale projects, we make two main contributions. First, we show that the parameters of a
classifier have a significant impact on its performance. Second, we show that combining multiple classifiers—whether those classifiers
are hand-picked or randomly chosen relative to intelligently-defined subspaces of classifiers—improves the performance of even the
best individual classifiers.
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1 INTRODUCTION

Developers typically use bug tracking databases, such
as Bugzilla [37], to manage incoming bug reports in
their software projects. For many projects, developers are
overwhelmed by the volume of incoming bug reports
that must be addressed. For example, in the Eclipse
project, developers receive an average of 115 new bug
reports every day; the Mozilla and IBM Jazz projects get
152 and 105 new reports per day, respectively. Develop-
ers must then spend considerable time and effort to read
each new report and decide which source code entities
are relevant for fixing the bug.

This task is known as bug localization [29], [40], [49],
which is defined as a classification problem: given n
source code entities and a bug report, classify the bug
report as belonging to one of the n entities. The classifier
returns a ranked list of possibly-relevant entities, along
with a relevancy score for each entity in the list. An
entity is considered relevant if it indeed needs to be mod-
ified to resolve the bug report, and irrelevant otherwise.

The developer uses the list of possibly-relevant entities
to identify an entity related to the bug report and make
the necessary modifications. After one relevant entity
is identified using bug localization, developers can use
change propagation techniques [1], [6] to identify any
other entities that also need to be modified. Hence, the
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bug localization task is to find the first relevant entity;
the task then switches to change propagation. Fully
or partially automating bug localization can drastically
reduce the development effort required to fix bugs, as
much of the fixing time is currently spent manually lo-
cating the appropriate entities, which is both difficult [19]
and expensive [53].

Current bug localization research uses information
retrieval (IR) classifiers to locate source code entities that
are textually similar to bug reports. However, current
results are ambiguous and contradictory: some claim
that the Vector Space Model (VSM) provides the best
performance [49], while others claim that the latent
Dirichlet allocation (LDA) model is best [29], while still
others claim that a new IR model is needed [40]. These
mixed results are due to the use of different datasets,
different performance metrics, and different classifier
configurations. A classifier configuration is a specification
of all the parameters that define the behavior of a
classifier, such as the way in which the source code is
preprocessed, how terms are weighted, and the similar-
ity metric between bug reports and source code entities.

In this paper, we aim to address this ambiguity by
performing a large-scale empirical study to compare
thousands of IR classifier configurations (see Table 2 for
a description of the configurations that we use in our
case studies) on a large quantity of bug reports. By using
the same datasets and performance metrics, we can
perform an apples-to-apples comparison of the various
configurations, quantifying the impact of configuration
on performance, and identifying which particular con-
figurations yield the best performance. We find that
configuration indeed has a large impact on performance:
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some configurations are nearly useless, while others
perform very well.

Further, we investigate the effect of combining the
results of different classifiers, since combination has been
shown to be beneficial in other domains [21] as well
as in software engineering (e.g., defect prediction [60]).
Classifier combinations (or ensembles) are known to be
helpful in many situations, such as when the individual
classifiers each have expertise in only a subset of the
input cases, or when the performance of the individ-
ual classifiers tends to vary widely. In this paper, we
present a framework for combining multiple classifiers
that, as we later show, can together achieve better bug
localization results than any single classifier. The main
intuition behind classifier combination is that when a
particular source code entity is returned high in the
lists of many classifiers, then we can guess with high
confidence that the entity is indeed relevant for the bug
report. Our framework easily extends to any kind of bug
localization classifier: we can combine IR-based classi-
fiers with dynamic analysis classifiers, defect prediction
classifiers, or any classifier that somehow solves the bug
localization problem. As long as the classifiers are fairly
uncorrelated in their wrong answers (i.e., the classifiers
tend to make different mistakes from each other), then
combining them will likely improve performance [21].
Given the nature of the bug localization problem, which
has many possible wrong answers for a given bug report
(i.e., source code entities that are unrelated to the bug
report), combining models has the potential to perform
well [35].

We perform a case study on three large-scale projects
to study the performance of thousands of classifier con-
figurations. Using these results as a baseline of perfor-
mance, we investigate the performance of combinations
of classifiers. We find that:
• The performance of a classifier is highly sensitive

to its configuration. For example, the “average”
configuration of a classifier in Eclipse achieves half
the performance of the best configuration.

• Combining classifiers almost always improves per-
formance, often by a significant amount. This is true
when the best individual classifiers are combined,
and also when random classifiers (which are cho-
sen from specific subsets of classifiers, where each
subset is defined to decrease the correlation between
their wrong answers) are combined.

We provide our data, results, and tools online [55] to
encourage others to replicate and extend our work.

The remainder of this paper is organized as follows.
Section 2 introduces IR model basics and describes
related work and its limitations. Section 3 presents a
framework to define and analyze classifier configura-
tions. Section 4 uses the framework to conduct an exten-
sive case study to evaluate the performance of various
classifier configurations. Section 5 presents a framework
for combining classifiers, and in Section 6 we investigate
the results of such combinations. We summarize and

discuss key findings in Section 7 and list potential threats
to the validity of our results in Section 8. We conclude
and outline future work in Section 9.

2 BACKGROUND AND RELATED WORK

All published bug localization research to date builds
classifiers using IR models. In this section, we introduce
IR models and describe existing IR-based bug localiza-
tion and concept/feature location approaches.

2.1 Information Retrieval Models

Information retrieval is the study of querying for text
within a collection of documents [31]. For example,
the Google search engine uses IR techniques to help
users find snippets of text in web pages. The “Find
Documents” function in a typical operating system is
based on the same theory, although applied at a much
smaller scale.

IR-based bug localization classifiers use IR models
to find textual similarities between a bug report (i.e.,
query) and the source code entities (i.e., documents). For
example, if a bug report contains the words , “Drop 20
bytes off each imgRequest object”, then an IR model looks
for entities which contain these words (“drop”, “bytes”,
“imgRequest”, etc.). When a bug report and entity contain
many shared words, then an IR-based classifier gives the
entity a high relevancy score.

IR-based classifiers contain several parameters that
control their behavior. Specifying a value for all pa-
rameters fully defines the configuration of a classifier.
Common to all IR-based classifiers are parameters to
govern how the input textual data is represented and
preprocessed:

1) Which parts of the source code should be con-
sidered: the comments, identifier names, or some
other representation, such as the previous bug re-
ports linked to each source code entity?

2) Which parts of the bug report should be consid-
ered: the title only, description only, or both?

3) How should the source code and bug report be
preprocessed? Should compound identifier names
(e.g., imgRequest) be split? Should common stop
words be removed? Should words be stemmed to
their base form?

After these parameters are configured, each IR model
has its own set of additional parameters that control
term weighting, reduction factors, similarity metrics, and
other aspects.

In the remainder of this section, we describe three
standard and widely-used IR models: the Vector Space
Model; Latent Semantic Indexing, an enhancement to the
Vector Space Model; and latent Dirichlet allocation, a
probabilistic topic model. We then discuss the various
preprocessing steps that can be applied to the source
code and bug reports.
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2.1.1 Vector Space Model (VSM)
The Vector Space Model is a simple algebraic model
based on the term-document matrix of a corpus [52]. The
term-document matrix is an m × n matrix whose rows
represent individual terms (i.e, words) and columns
represent individual documents. The ith,jth entry in the
matrix is the weight of term wi in document dj . VSM rep-
resents documents by their column vector in the term-
document matrix: a vector containing the weights of the
words present in the document, and zeros otherwise.
The similarity between two documents is calculated by
comparing their two vectors. In VSM, two documents
will only be deemed similar if they contain at least one
shared term; the more shared terms they have, the higher
their similarity score will be.

VSM uses the following parameters:
• Term weighting (TW): the weight of a term in a

document. Popular values for this parameter are
raw frequency (i.e., the number of occurrences of
the term in the document), or tf-idf (term frequency,
inverse document frequency) [31].

• Similarity metric (Sim): the similarity between two
document vectors. Popular parameter values are Eu-
clidean distance, cosine distance, Hellinger distance,
or KL divergence.

2.1.2 Latent Semantic Indexing (LSI)
Latent Semantic Indexing, or Latent Semantic Analysis
(LSA), is an extension to VSM in which singular value
decomposition (SVD) is used to as a means to project the
original term-document matrix into three new matrices:
a topic-document matrix D; a term-topic matrix T ; and
a diagonal matrix S of eigenvalues [14]. Importantly,
LSI reduces the rank of D and T to rank K, where
K is a parameter provided by the user. During the
projection, terms which are related by collocation (i.e.,
terms which often occur in the same documents) are
grouped together into “concepts,” or sometimes called
“topics.” For example, a GUI-related topic might contain
the words “mouse”, “click”, “left”, and “scroll”, because
these words tend to appear in the same documents. The
reduced dimensionality of the topic-document matrix
has increased performance over VSM when dealing with
polysemy and synonymy [2]. For example, documents
can be deemed similar even if they do not share any
terms, but instead share terms from the same topic
(e.g., document 1 contains “mouse” and document two
contains “click”).

In LSI, documents are still represented as column
vectors, although the vectors now contain the weight
of topics rather than the weights of single terms. The
same similarity measures can be used to determine the
similarity between two documents.

LSI uses the following parameters:
• Term weighting (TW): similar to the VSM TW.
• Number of topics (K): controls how many topics are

kept during the SVD reduction.

• Similarity metric (Sim): similar to the VSM Sim.

2.1.3 Latent Dirichlet Allocation (LDA)

Latent Dirichlet allocation [5] is a popular statistical topic
model which provides a means to automatically index,
search, and cluster documents that are unstructured and
unlabeled [4]. Like LSI, LDA accomplishes these tasks by
first discovering a set of “topics” within the documents,
and then representing each document as a mixture of
topics. The key difference between LSI and LDA is the
method used to generate topics. In LSI, topics are a
byproduct of the SVD reduction of the term-document
matrix. In LDA, topics are explicitly created through
a generative process, using machine learning algorithms
(such as Gibbs sampling) to iteratively deduce which
words are present in which topics, and which topics
are present in which documents. While the generative
process of LDA enjoys several theoretical advantages
over LSI and VSM, such as model checking and no
assumptions about the distribution of term counts in the
corpus, the results of LDA in practical IR studies have
thus far been mixed [29], [49].

LDA uses the following parameters:

• Number of topics (K): controls how many topics are
created.

• α: a document-topic smoothing parameter.
• β: a word-topic smoothing parameter.
• Number of iterations (iters): number of sampling

iterations in the generative process. (In some recent
implementations of LDA, the number of iterations
is not required as an input parameter.)

• Similarity metric (Sim): similar to the VSM Sim.

2.1.4 Data Preprocessing

Before IR models are applied to source code and bug
reports, several preprocessing steps are generally taken
in an effort to reduce noise and improve the resulting
models.

• Characters related to the syntax of the programming
language (e.g., “&&”, “->”) are removed; program-
ming language keywords (e.g., “if”, “while”) are
removed.

• Identifier names are split, using regular expres-
sions, into multiple parts based on common naming
conventions, such as camel case (oneTwo), under-
scores (one_two), dot separators (one.two), and
capitalization changes (ONETwo) [15], [20]. Recently,
researchers have proposed more advanced tech-
niques to split identifiers, based on speech recog-
nition [30], automatic expansion [27], and mining
source code [17], which may be more language-
independent than simple regular expressions.

• Common English-language stop words (e.g., “the”,
“it”, “on”) are removed. In addition, custom stop
word lists can be used, such as domain-specific
jargon lists.
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• Word stemming is applied to find the root of each
word (e.g., “changing” and “changes” both become
“chang”), typically using the Porter algorithm [45].

The main idea behind these optional steps is to capture
developers’ intentions, which are thought to be encoded
within the identifier names and comments in the source
code [46]. The rest of the source code (i.e., special syntax,
language keywords, and stop words) are viewed as noise
and will not be beneficial as input for IR models. Sec-
tion 4.1 describes which preprocessing steps we consider
in this paper. For replication purposes, we provide our
preprocessing tool online [55].

2.2 Existing IR-based Bug Localization Approaches
Researchers have explored the use of IR models for
bug localization. For example, Lukins et al. compare
the performance of LSI and LDA using three small case
studies [28], [29]. The authors build the two IR classifiers
on the identifiers and comments of the source code
and compute the similarity between a bug report and
each source code entity using the cosine and conditional
probability similarity metrics. By performing case stud-
ies on Eclipse and Mozilla (on a total of 3 and 5 bug
reports, respectively), the authors find that LDA often
outperforms LSI. We note that the authors use manual
query expansion, which may influence their results.

Nguyen et al. introduce a new topic model based
on LDA, called BugScout, in an effort to improve bug
localization performance [40]. BugScout explicitly con-
siders past bug reports, in addition to identifiers and
comments, when representing source code documents,
using the two data sources concurrently to identify
key technical concepts. The authors apply BugScout to
four different projects and find that BugScout improves
performance by up to 20% over LDA applied only to
source code.

Rao and Kak compare several IR models for bug
localization, including VSM, LSI, and LDA, as well as
various combinations [49]. The authors perform a case
study on a small dataset, iBUGS [12], and conclude that
simpler IR models often outperform more sophisticated
models.

Limitations of current research. In current research,
researchers only consider a single or a few configurations
of the classifiers (see Table 1), often with no justification
given for why each parameter value was chosen out of
the large space of possible values. Worse, many param-
eter values are left unspecified, making replication of
their results difficult or impossible. Given that there are
several choices for each parameter in the configuration,
and the parameters are independent, there are thousands
of possible configurations for each underlying IR model.
The effectiveness of each configuration—which param-
eters are important, and which parameter values work
best—is currently unknown. As a result, researchers and
practitioners are left to guess which configuration to use
in their project.

2.3 IR-based Concept/Feature Location Approaches

Closely related to IR-based bug localization is the prob-
lem of IR-based concept (or feature) location. In both
problems, the goal is to identify a source code entity
that is relevant to a given query. The difference is that
in bug localization the query is the text within a bug re-
port, whereas in concept location the query is manually
created by the developer.

LSI was first used for concept location by Marcus
et al. [32]. The authors found that LSI provides better
results than existing approaches at the time, such as
regular expressions and dependency graphs.

Researchers have also combined various approaches
to perform concept location. Poshyvanyk et al., for ex-
ample, combine LSI with a dynamic feature location ap-
proach called scenario-based probabilistic ranking; these
two approaches operate on different datasets and use
different analysis methods [46]. The results of the com-
bined approach are much better than either individual
approach, as evidenced by two case studies on large
projects. Poshyvanyk et al. combine LSI and Formal
Concept Analysis to achieve similar effects [47]. Cleary
et al. combine several IR models with Natural Language
processing techniques and conclude that NLP techniques
do not significantly improve results [10]. Finally, Revelle
et al. combine LSI, dynamic analysis, and web mining al-
gorithms for feature location and find that the combina-
tion outperforms any of the individual approaches [50].

3 CONFIGURATION FRAMEWORK

As illustrated in Section 2.1, the use of IR classifiers in
bug localization requires the definition of many param-
eters. In fact, since there are so many parameters, and
some parameters can take on any numeric value, there
are effectively an infinite number of possible configura-
tions of IR classifiers. Researchers in the data mining
community argue that in the ideal world, algorithms
(of any kind) should require no tuning parameters, to
avoid potential bias by the user [23]. However, such an
ideal is not often met, and the reality of IR classifiers is
that they contain many parameters. Unfortunately, as we
showed in Section 2.2, current bug localization research
uses manual selection of parameter values and considers
only a tiny fraction of all possible configurations.

In this section, we propose a configuration framework for
analyzing the various configurations of a classifier. We
will use the framework in Section 4 for analyzing bug
localization classifiers, but the framework is general so
that it can be used in any domain where many possible
configurations of a classifier need to be analyzed.

We summarize the framework as follows:

1) Define a set of classifier configurations.
2) Execute each configuration to perform the task

at hand, and measure the performance of each
configuration using some effectiveness measure.
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TABLE 1
Summary of the classifier configurations used by existing bug localization work, and their performance results.

Question marks indicate that the parameters were not specified.

Classifier configuration Studied
projects

Performance
metric Results*

Entity rep. Bug rep. Preprocess IR model

Lukins et
al. [28], [29]

Idents +
comments

Title +
descr.

Stem LDA (K=100, α=50/K, β=0.01, iters=?, Sim=CP) Mozilla Mean rank 5.8
Rhino Mean rank 1–1,062
Eclipse Mean rank 492–11,234

Nguyen et
al. [40]

Idents +
comments

Title +
descr.

Split+stem LDA (K= 300, α=0.01, β=0.01, iters=?, Sim=cosine) Jazz Top-20 0.39
Eclipse Top-20 0.33
AspectJ Top-20 0.28
ArgoUML Top-20 0.34

BugScout (K= 300, α=0.01, β=0.01, iters=?, Sim=cosine) Jazz Top-20 0.48
Eclipse Top-20 0.39
AspectJ Top-20 0.51
ArgoUML Top-20 0.45

Rao and
Kak [49]

Idents ? Split VSM (TW=tf-idf, Sim=cosine) AspectJ MAP 0.0796

LSI (TW=tf-idf, K=500, Sim=cosine) AspectJ MAP 0.0650

LDA (K=150, α=0.33, β=0.01, iters=?, Sim=KL) AspectJ MAP 0.0125
* We present results to the best of our ability. Some papers only provide results in graph form, forcing us to estimate the exact value.

3) Analyze the performance of each configuration,
and the various parameter settings, using, for ex-
ample, Tukey’s HSD statistical test.

We describe each step in more detail.

3.1 Define Configurations

As mentioned previously, a classifier is defined by a
configuration—a set of parameter values that specify the
behavior of the classifier. To define a configuration is to
specify the value of each parameter. Some parameters
may be categorical (e.g., which similarity metric is used)
while others might be continuous (e.g., the number of
topics in LSI or LDA).

We introduce here a notation that is useful for describ-
ing an individual configuration. The notation encodes
the value (whether it’s categorical or numerical) of each
parameter, leaving no room for ambiguity. As an exam-
ple, consider an IR classifier that takes two parameters
X and Y , both integers. In our notation, a configuration
for this classifier is written as “X.Y”: 10.3, for example,
defines the configuration in which X=10 and Y =3, and
4.2 defines X=4 and Y =2. Categorical levels may be
given arbitrary names, such as A1 and A2 to describe
two possible levels. This notation succintly names and
describes a large set of configurations.

We note that many experimental design procedures
exist to help one choose which configurations need to be
defined in order to allow for an accurate analysis. First,
parameters with numeric values are quantized from a
continuous scale to a small subset of values. Second,
an experimental design is chosen. For example, a fully
factorial design [26] dictates that all (considered) values
of one parameter be examined with respect to all values
of all other parameters, resulting in the maximum pos-
sible number of configurations. Smaller designs include

Box Benhkens [7] and central composite [39]. No matter
the chosen design, the next two steps in our framework
remain the same.

3.2 Execute Configurations
The next step in our framework is to execute each config-
uration on the task at hand, to produce a set of tuples (Ci,
f(Ci)), where each tuple contains the effectiveness f(Ci)
of configuration Ci. How exactly this is performed varies
by the task. In bug localization, for example, this step
entails (for each configuration): preprocessing the source
code and bug reports; building the index on the source
code; running the queries (bug reports) against the index
to retrieve a ranked list of results; and evaluating the
results using some measure of effectiveness (such as
top-20 for the task of bug localization, defined later in
Section 4.1.5, or F-measure or Mean Average Precision
for the task of traceability linking).

3.3 Analyze Performance of Configurations
Finally, we analyze the performance of the configura-
tions. We have two different goals. First, we wish to de-
termine the best and worst configurations; and second,
we wish to determine which parameter values are most
effective.

To determine the best configurations, we simply sort
the configurations by their effectiveness measure f(C) in
ascending or descending order, depending on whether
high or low values of f(C) are desirable, respectively.

To determine which parameter values are statistically
most effective, we use Tukey’s Honestly Significant Dif-
ference (HSD) test [58] to compare the performance of
each value of each parameter. The HSD test is a statistical
test on the means of the results produced for each
parameter value—holding one parameter constant, and
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letting all other parameters vary. For a given parameter
(e.g., “number of topics”), the HSD test compares the
mean of each possible value with the mean of every
other possible value (e.g., “32” vs. “64” vs. “128”). Using
the studentized range distribution [57], the HSD test
determines whether the differences between the means
exceed the expected standard error. The result of HSD
is a set of statistically-equivalent groups of parameter
values. If two parameter values belong to the same
group, then the performances of the parameter values
are not statistically different, and either may be used
in place of the other. Note that a parameter value can
belong to multiple groups, and group memberships are
not transitive: if parameter value A and parameter value
B belong to the same group, and parameter value B and
parameter value C belong to the same group, value A
and value C do not necessarily belong to the same group.

4 CASE STUDY 1: WHICH CONFIGURATION IS
BEST?
The goal of this case study is to evaluate the space
of bug localization classifier configurations: which data
representations, preprocessing steps, and other IR model
parameter values result in the best bug localization
performance. We use the configuration framework pre-
sented in Section 3.

4.1 Case Study Design
In this section we outline the design of our case study:
which classifiers we define, which software projects we
test, our data collection technique, and the performance
metric (i.e., criterion function) we use.

4.1.1 Defined Classifiers
We consider two families of classifiers: IR-based classi-
fiers and entity metric-based classifiers. Tables 2 and 3
list all the parameters and their values in our classifier
evaluation, for IR-based classifiers and entity metric-
based classifiers, respectively. values; indeed, an infinite
number of possibilities exist. Instead, we aim to choose
realistic values that are representative of those used most
often in the literature, while keeping a reasonable num-
ber of configurations. We now describe each parameter
and its possible values in more detail.

IR-based Classifiers. We build IR-based classifiers based
on the three popular IR models described in Section 2.1:
VSM, LSI, and LDA. For each IR model, we must decide
which bug report representation to use for the query,
which source code entity representation to use to build
the index, how to preprocess the bug report and source
code representation, and the remaining parameter values
for the particular IR model.

For source code entity representation, we consider six
values. The first three are based on the text of the source
code entity itself: the identifier names (i.e., variable and
method names) only (B1); comments only (B2); and both

identifiers and comments (B3). As proposed by Nguyen
et al. [40], we also consider the past bug reports (PBR)
related to a source code entity. To do so, we represent
the source code entity as a collection of the text of all
of its PBRs. The idea is that a new bug report might
be more textually similar to a past bug report than to
the identifier names or comments of an entity, giving
the IR model a better chance for success. We consider
two values: using all the PBRs of an entity (B4); and
using just the 10 most recent (i.e., min(10, |PBR|)) PBRs
of an entity (B5). (We never include bug reports that
were created in the future, relative to the bug report
under consideration as a query.) Finally, we consider all
possible data for a entity: its identifier, comments, and
all PBRs (B6).

For bug report (i.e., query) representation, we consider
three values: the title of the bug report only (A1); the
description of the bug report only (A2); and both the
title and description of the bug report (A3). In this study,
we do not consider the comments or other metadata
related to the bug report, as this information is usually
not available at the time of bug localization. We also do
not perform any query expansion techniques besides the
preprocessing steps described below.

We consider three common preprocessing steps (see
Section 2.1.4): splitting identifiers using simple regular
expressions; removing stop words; and stemming us-
ing the Porter stemming algorithm. (We provide online
the exact code and stop word lists that we use for
preprocessing [55].) We remove programming language
keywords and punctuation. Since the application of each
preprocessing step is binary (i.e., is performed or is
not performed), and all three preprocessing steps can
be applied independently, we test a total of 8 possible
preprocessing techniques (C0–C7).

The VSM model has two parameters: term weight-
ing and similarity score. For term weighting, we con-
sider the tf-idf (D1) and sublinear tf-idf (D2) weighting
schemes [31], as well as the more basic Boolean (D3)
weighting scheme [31]. For similarity score, we con-
sider both the cosine (E1) and overlap similarity (E2)
scores [31].

The LSI model has three parameters: term weighting,
similarity score, and number of topics. We consider
the same three term weighting schemes as we do for
the VSM model (F1–F3). We hold the similarity score
constant at cosine (H1), since research has shown this
to be the best similarity score for LSI [31]. Finally, we
consider four values for the number of topics: 32, 64, 128,
and 256 (G32–G256). Smaller values produce coarser-
grained topics, while larger values produce finer-grained
topics. There is currently no automatic methodology for
choosing an optimal number of topics a priori, so we
select values that cover the range of typical values [56].

The LDA model has five parameters: number of topics,
a document-topic smoothing parameter, a topic-word
smoothing parameter, number of sampling iterations,
and similarity score. We consider four values for the
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number of topics: 32, 64, 128, and 256 (J32–J256), to be
consistent with our choices for the LSI model. The LDA
implementation that we use, called MALLET [33], au-
tomatically optimizes for the document-topic and topic-
word smoothing parameters, so we do not manually set
values for these parameters. We also do not manually
specify the number of iterations, and instead let the
model run until convergence. Finally, we consider the
conditional probability score (N1), as it is most relevant
for IR applications [61]. Conditional probability has the
advantage that it does not require the bug reports to
be included in the LDA model at run-time. In contrast,
other similarity measures are impractical because they
require LDA to be rerun (on the source code entities and
the bug reports) every time a new bug report appears.

Entity Metric-based (EM-based) Classifiers. The past
decade has been very active for research in the area
of bug prediction [13]. Briefly, this research aims at
measuring features of the source code, such as lines of
code (LOC), past bug-proneness, change proneness, and
logical coupling between classes, to predict which source
code entities contain bugs.

Entity metric-based bug localization classifiers use the
insight from the bug prediction literature that many
entity metrics are highly correlated with an entity’s bug
count. To this end, EM-based classifiers first calculate
one or more metrics on the source code entities. Then,
the classifiers rank the source code entities based on
the metrics. For example, a higher LOC metric indicates
more bugs, so one EM-based classifier would sort the
entities by their LOC.

We note that, unlike IR-based classifiers, the rankings
of EM-based classifiers are not based on the given bug
report, so the same ranked list will be created for every
bug report. Still, we note (and the bug prediction litera-
ture confirms) that since bugs are highly concentrated in
a small number of source code entities, this list is likely
to be accurate for any given bug report.

The EM-based classifiers have only a single parame-
ter: which entity metric is used to determine the bug-
proneness of an entity. We consider four metrics: the
lines of code (LOC) of an entity; the churn of an en-
tity (i.e., number of LOC that were added, deleted, or
changed since the previous version); the cumulative bug
count of an entity (i.e., the number of bugs that have
been associated with this entity in the past); the new bug
count of an entity (i.e., the number of bugs only since
the previous version). Previous research has shown that
these metrics are good predictors of the bug-proneness
of an entity, so we expect the metrics to have reasonable
performance for bug localization.

Fully Factorial Design. To quantify the performance of
all possible classifiers (given our considered parameters
and their possible values) we use a fully factorial design
of our case study [26]. In this design, we explore every
possible combination of parameter values. In our case, a
fully factorial design results in a total of 3,168 IR-based

TABLE 2
The IR family of classifiers that we study. We show the

configuration parameters and the values that we
consider for each of the three underlying IR models:

VSM, LSI, and LDA.

Parameter Value

Parameters common to all IR classifiers

Bug report represention A1 (Title only)
A2 (Description only)
A3 (Title+description)

Entity represention B1 (Identifiers only)
B2 (Comments only)
B3 (Idents+comments)
B4 (PBR-All)
B5 (PBR-10 only)
B6 (Idents+comments+PBR-All)

Preprocessing steps C0 (None)
C1 (Split only)
C2 (Stop only)
C3 (Stem only)
C4 (Split+stop)
C5 (Split+stem)
C6 (Stop+stem)
C7 (Spit+stop+stem)

Parameters for VSM only

Term weight D1 (tf-idf)
D2 (Sublinear tf-idf)
D3 (Boolean)

Similarity metric E1 (Cosine)
E2 (Overlap)

Parameters for LSI only

Term weight F1 (tf-idf)
F2 (Sublinear tf-idf)
F3 (Boolean)

Number of topics G32 (32 topics)
G64 (64 topics)
G128(128 topics)
G256 (256 topics)

Similarity metric H1 (Cosine)

Parameters for LDA only

Number of iterations I1 (Until model convergence)

Number of topics J32 (32 topics)
J64 (64 topics)
J128 (128 topics)
J256 (256 topics)

α K1 (Optimized based on K)

β L1 (Optimized based on K)

Similarity metric N1 (Conditional probability)

TABLE 3
The EM family of classifiers that we study. We show the
configuration parameters and the values we consider.

Parameter Value

Metric M1 (Lines of code)
M2 (Churn)
M3 (New bug count)
M4 (Cumulative bug count)
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TABLE 4
Studied projects.

Eclipse Jazz Mozilla
(JDT) (All) (mailnews)

Domain IDE IDE Web
Language Java Java C/C++/Java
License Open Closed Open
Years considered 2002–2009 2007–2008 2004–2006
Snapshots 16 8 10
Bugs (preprocessed) 3,898 2,818 1,368
Source code files 1,882–2,559 756–887 319–332
LOC (K) 232–506 133–168 173–193

classifiers (VSM: 864=(3 bug data)*(6 entity data)*(8 pre-
processing)*(3 term weights)*(2 similarity); LDA: 576=(3
bug data)*(6 entity data)*(8 preprocessing)*(4 no. of top-
ics); LSI: 1728=(3 bug data)*(6 entity data)*(8 prepro-
cessing)*(3 term weights)*(4 no. of topics)) and 4 entity
metric-based classifiers. Thus, we have 3,172 classifiers
under test.

4.1.2 Studied Projects
We study three software projects: Eclipse JDT, IBM Jazz,
and Mozilla mailnews (Table 4). Eclipse is a large, pop-
ular integrated development environment (IDE) written
in Java [16]. Eclipse JDT is the subset of Eclipse that
implements Java development tools. Jazz is a proprietary
IDE developed by IBM [22]. Mozilla is an application
suite concerned mostly with web browsing and email
clients [38]. Written mostly in C++, Mozilla is one of the
largest and most active open-source projects to date; due
to its size and the requirements of our case study, we
only consider the largest module of Mozilla, mailnews.

We choose these projects mainly for two reasons. First,
these projects are large, active, real-world projects, which
allow us to perform a realistic evaluation of the classi-
fiers under test. Second, each project carefully maintains
bug tracking databases and source code version control
repositories, which allows us to build our ground-truth
datasets to evaluate the classifiers. Table 5 gives example
bug reports from each studied project.

4.1.3 Data Collection and Ground Truth
We begin by obtaining the raw bug data from the bug
tracking database and the source code from the version
control system (VCS) for each studied project.

4.1.3.1 Creating the Ground Truth: To create the
ground truth data that we use to evaluate relevancy,
we use an approach similar to Fischer et al. [18] to link
resolved bug reports to the version control system that
were changed to resolve the bug [54]. Our approach
parses the commit log messages from the source code
repository (e.g., CVS, SVN, Git), looking for messages
such as “Fixed Bug #45433” or similar variations. If
found, the algorithm establishes a link between all the
source code entities in the commit transaction with the
identified bug ID, if it exists in the bug database. The
approach uses several heuristics that in concert find

Time 
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Bug 
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Bug 
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Bug 
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Bug 
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Code v2 
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Fig. 1. Source code snapshots used in our evaluation pro-
cedure. First, we take snapshots of the project’s source
code at six month intervals to build the classifiers. For
each bug report under test, we use the classifiers built
on the most recent (relative to the bug report) snapshot.

fairly accurate links [18], [54]. The result is a reliable set
of links between bug reports and source code entities,
which we use to evaluate the classifiers under test. We
provide our ground truth dataset online [55].

4.1.3.2 Source Code Preprocessing: We work at
the file level of granularity. We preprocess the source
code entities at each snapshot according to the specified
classifier configuration (C0 to C7 in Table 2).

4.1.3.3 Bug Report Preprocessing: After collecting
bug reports from the bug repositories, we preprocess
them in the following manner. First, we remove bug re-
ports that meet one or more of the following conditions.
• Bug report is not marked as “FIXED”
• Bug report does not result in the change of at

least one entity. Some bugs, such as bug #6994 in
Eclipse, deal with meta-source code issues, such as
configuring an IDE correctly to build the project.
Fixing these bugs results in no actual entity changes,
and thus no links are created.

• Bug report has empty title field after pre-processing.
• Bug report links to build or configuration files (we

are only interested in bugs linked to source code
entities).

We preprocess the remaining bug reports according to
the specified classifier configuration. For a given clas-
sifier, the same preprocessing steps are applied to the
source code and bug reports.

4.1.4 Evaluation Procedure
Ideally, for each bug report in our testing set, we would
take a snapshot of the source code at the exact time the
bug report was created, build all classifiers using data
from that snapshot, and perform the classification. This
process would provide the most accurate and realistic
evaluation scenario, because it uses the source code
that the classifiers would have available in a real-world
situation. However, doing so would be too computation-
ally expensive for our evaluation, as we are evaluating
thousands of bugs and thousands of classifiers, each
taking upwards of several minutes to build using our
unoptimized research prototypes. As a compromise, we
first take snapshots of each project’s source code from
the studied projects’ VCS at six month intervals over the
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TABLE 5
Example bug reports in the three studied projects, and their relevant source code entities.

Project Bug ID Title Relevant entity(s) from ground truth

Eclipse 102645 “[open type] Open Type history shows stale visibility info in type history” util.TypeInfo.java
106638 “[misc] Support BiDi chs in logical expr in java editor” JavaSourceViewer.java
100062 “[formatting] Code formatter is broken on test case from bug 99999” CodeFormatterVisitor.java
100302 “StackOverflowError during completion” CompletionParser.java

Jazz 28284 “Create button enabled for process iterations while editor is loading” processpart.java
18317 “Move team area dialog should not allow to show archived areas.” teamareamovewizard.java
21247 “Offer to switch to edit mode when I start typing in the over page” wikiformpage2.java
30963 “Error messages in bluesdev server log for I20070912-2000” auditableserver.java

Mozilla 105964 “Drop 20 bytes off each imgRequest object” imgRequest.cpp
24668 “[DOGFOOD]Crash when clicking on Finish on Account Setup” xpcwrappedjsclass.cpp
11001 “[4.xP] Table spacing borders incorrect at http://www.choochem.com” nsElementTable.cpp

222023 “regression: pref parser should accept single-quote delimited strings” prefread.cpp

duration of the project and precompute the classifiers at
each snapshot (Figure 1). Given a bug report during eval-
uation, we determine the most recent past snapshot of
the source code and use the corresponding precomputed
classifiers. This process allows us to consider temporally
appropriate source code for each bug report without
requiring substantial computation.

For each classifier under test, we perform the follow-
ing procedure. For every bug report in each studied
project, we determine the nearest snapshot occuring in
the past, and use the classifier to obtain the ranked
list of source code entities. Using the ground truth, we
determine the rank of the first relevant entity on the list.

4.1.5 Performance Metrics
To measure the performance of a classifier, we use the
top-k accuracy metric, as others have [40]. The top-k
accuracy metric measures the percentage of bug reports
in which at least one relevant source code entity was
returned in the top k results. Formally,

top-k(Cj) =
1

|Q|

|Q|∑
i=1

I
(
∃d ∈ D | rel(d, qi) ∧ r(d | Cj , qi) ≤ k

)
,

where |Q| is the number of queries (i.e., bug reports), qi is
an individual query, rel(d, qi) returns whether entity d is
relevant (using truth information) to query qi, r(d|Cj , qi)
is the rank of d given by Cj in relation to qi, and I is
the indicator function, which returns 1 if its argument
is true and 0 otherwise. For example, a top-20 accuracy
value of 0.25 indicates that for 25% of the bug reports,
at least one relevant source code entity was returned in
the top 20 results. Previous work has set k to 20, with
the idea that 20 is a reasonable number of entities for
a developer to search through before growing impatient
and resorting to other means of bug localization [40].

Other metrics which are commonly used for evaluat-
ing IR models, such as precision, recall, and Mean Aver-
age Precision (MAP), are inappropriate for our purposes.
In bug localization, the task is to locate the first relevant
entity for a given bug report, and therefore there is at
most one correct answer in the list of returned entities;

precision, recall, and MAP metrics are appropriate only
when we expect to find several possible correct answers
for each query.

4.2 Results
Table 6 shows the best and worst four configurations of
each of the four classification families: three IR classi-
fication techniques (VSM, LSI, and LDA) and one EM
classification technique, for each of the three studied
projects, ordered by the top-20 metric. (We provide the
full set of results for all configurations online [55].) For
all three studied projects, the VSM classification tech-
nique achieves the best overall performance, consistent
with previous findings [49]. The best configuration of
VSM varies slightly from project to project, and many
configurations have comparable performance.

Table 7 shows the dispersion of the performance of
the various configurations: the worst, average, and best
configuration performances for each of the four classi-
fication techniques. We find that configuration matters:
for all studied projects and all classification techniques,
the differences between the worst configuration and
best configuration is significant. The differences between
the “average” configuration and the best configuration
is also significant: for example, in Eclipse, using the
VSM classification technique, the median top-20 per-
formance is 21% (configuration VSM.A2.B2.C4.D1.E2),
while the best performance is 55% (configuration
VSM.A3.B6.C7.D1.E1). This suggests that the choice of
bug report representation, entity representation, prepro-
cessing steps, and IR model parameters has a large effect
on the overall performance of a classifier, no matter the
underlying classification technique.

We now present the results of Tukey’s HSD statistical
test on each parameter listed in Table 2. We note that
all of our results meets the homoscedasticity condition
required by Tukey’s HSD test, as determined by the
bartlett.test() method in R.

4.2.1 Bug Report Representation
Table 8 shows the HSD results for the bug report rep-
resentation parameter. (We provide the HSD results for
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TABLE 6
The best four and worst four configurations, for each classifier family (VSM, LSI, LDA, and EM) and each studied

project. The configurations are ordered according to their top-20 performance.

VSM LSI LDA EM

Rank Configuration Top-20 Rank Configuration Top-20 Rank Configuration Top-20 Rank Configuration Top-20

Eclipse

1 VSM.A3.B6.C7.D1.E1 0.548 1 LSI.A3.B6.C4.F2.G256 0.462 1 LDA.A1.B4.C7.J128 0.290 1 EM.M3 0.405
2 VSM.A3.B6.C4.D1.E1 0.535 2 LSI.A3.B6.C7.F2.G256 0.444 2 LDA.A1.B4.C6.J128 0.290 2 EM.M4 0.323
3 VSM.A3.B3.C7.D1.E1 0.524 3 LSI.A3.B6.C1.F2.G256 0.438 3 LDA.A1.B5.C7.J128 0.282 3 EM.M1 0.226
4 VSM.A3.B6.C5.D1.E1 0.512 4 LSI.A3.B6.C2.F2.G256 0.434 4 LDA.A1.B5.C6.J128 0.282 4 EM.M2 0.172

861 VSM.A2.B3.C0.D3.E1 0.012 1725 LSI.A2.B6.C0.F1.G32 0.065 573 LDA.A2.B3.C3.J64 0.009 –
862 VSM.A2.B3.C0.D3.E2 0.012 1726 LSI.A2.B3.C3.F1.G32 0.061 574 LDA.A3.B6.C0.J64 0.009 –
863 VSM.A2.B3.C1.D3.E2 0.011 1727 LSI.A3.B3.C0.F1.G32 0.056 575 LDA.A3.B3.C0.J64 0.008 –
864 VSM.A2.B3.C1.D3.E1 0.011 1728 LSI.A2.B3.C0.F1.G32 0.044 576 LDA.A3.B6.C0.J32 0.007 –

Jazz

1 VSM.A3.B6.C6.D1.E1 0.686 1 LSI.A3.B6.C2.F2.G256 0.588 1 LDA.A3.B1.C7.J256 0.336 1 EM.M3 0.330
2 VSM.A3.B6.C7.D1.E1 0.673 2 LSI.A3.B6.C6.F2.G256 0.584 2 LDA.A3.B3.C7.J256 0.331 2 EM.M4 0.301
3 VSM.A3.B6.C2.D1.E1 0.669 3 LSI.A3.B6.C6.F2.G128 0.576 3 LDA.A3.B6.C7.J256 0.330 3 EM.M1 0.181
4 VSM.A3.B6.C4.D1.E1 0.657 4 LSI.A3.B6.C2.F2.G128 0.574 4 LDA.A1.B6.C7.J256 0.318 4 EM.M2 0.161

861 VSM.A2.B6.C1.D3.E2 0.069 1725 LSI.A2.B3.C0.F2.G32 0.144 573 LDA.A2.B3.C0.J64 0.066 –
862 VSM.A2.B6.C1.D3.E1 0.068 1726 LSI.A2.B3.C0.F1.G64 0.139 574 LDA.A2.B3.C0.J256 0.065 –
863 VSM.A2.B6.C0.D3.E2 0.068 1727 LSI.A2.B3.C3.F1.G32 0.121 575 LDA.A2.B3.C3.J32 0.057 –
864 VSM.A2.B6.C0.D3.E1 0.068 1728 LSI.A2.B3.C0.F1.G32 0.098 576 LDA.A2.B3.C0.J32 0.051 –

Mozilla

1 VSM.A3.B6.C6.D1.E1 0.802 1 LSI.A3.B3.C2.F2.G128 0.794 1 LDA.A3.B6.C7.J128 0.523 1 EM.M3 0.667
2 VSM.A3.B6.C7.D1.E1 0.796 2 LSI.A3.B3.C6.F2.G128 0.782 2 LDA.A3.B6.C7.J256 0.522 2 EM.M4 0.576
3 VSM.A3.B6.C4.D1.E1 0.794 3 LSI.A3.B3.C2.F2.G256 0.781 3 LDA.A3.B6.C4.J256 0.517 3 EM.M1 0.528
4 VSM.A3.B6.C5.D1.E1 0.788 4 LSI.A3.B6.C2.F2.G128 0.778 4 LDA.A3.B6.C7.J64 0.505 4 EM.M2 0.383

861 VSM.A2.B2.C1.D3.E2 0.067 1725 LSI.A2.B4.C1.F3.G32 0.242 573 LDA.A1.B5.C4.J256 0.058 –
862 VSM.A2.B2.C1.D3.E1 0.066 1726 LSI.A2.B4.C0.F3.G32 0.240 574 LDA.A1.B5.C2.J256 0.058 –
863 VSM.A2.B2.C0.D3.E2 0.062 1727 LSI.A2.B4.C5.F3.G32 0.228 575 LDA.A1.B5.C7.J256 0.000 –
864 VSM.A2.B2.C0.D3.E1 0.061 1728 LSI.A2.B4.C3.F3.G32 0.225 576 LDA.A1.B5.C6.J256 0.000 –

TABLE 8
The results of Tukey’s HSD test for the bug report representation parameter, for each IR classification technique and
each studied project. If two values appear in the same group, then their top-20 performances were not statistically

different.

VSM LSI LDA

Group Mean Parameter value Group Mean Parameter value Group Mean Parameter value

Eclipse

a 0.238 A1 (title) a 0.259 A3 (title+descr.) a 0.131 A1 (title)
a 0.215 A3 (title+descr.) b 0.227 A1 (title) b 0.070 A3 (title+descr.)
b 0.180 A2 (descr.) b 0.217 A2 (descr.) b 0.062 A2 (descr.)

Jazz

a 0.354 A1 (title) a 0.399 A3 (title+descr.) a 0.214 A1 (title)
a 0.351 A3 (title+descr.) b 0.362 A1 (title) a 0.206 A3 (title+descr.)
b 0.270 A2 (descr.) c 0.314 A2 (descr.) b 0.158 A2 (descr.)

Mozilla

a 0.458 A1 (title) a 0.555 A3 (title+descr.) a 0.346 A1 (title)
ab 0.439 A3 (title+descr.) a 0.542 A1 (title) a 0.325 A3 (title+descr.)
b 0.402 A2 (descr.) b 0.515 A2 (descr.) b 0.282 A2 (descr.)
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TABLE 7
Performance dispersion amongst classifier

configurations, using the top-20 performance metric.

Configs. Min. 1st Qu. Med. Mean 3rd Qu. Max.

Eclipse

VSM 864 0.011 0.083 0.209 0.211 0.321 0.548
LSI 1728 0.044 0.175 0.228 0.234 0.287 0.462
LDA 576 0.007 0.053 0.074 0.088 0.101 0.290
EM 4 0.172 0.213 0.275 0.281 0.343 0.405

Jazz

VSM 864 0.068 0.214 0.322 0.325 0.430 0.686
LSI 1728 0.098 0.306 0.354 0.358 0.403 0.588
LDA 576 0.051 0.149 0.195 0.192 0.238 0.336
EM 4 0.161 0.176 0.241 0.243 0.308 0.330

Mozilla

VSM 864 0.061 0.271 0.441 0.433 0.604 0.802
LSI 1728 0.225 0.441 0.536 0.537 0.647 0.794
LDA 576 0.000 0.228 0.322 0.318 0.418 0.523
EM 4 0.383 0.492 0.552 0.538 0.599 0.667

the remaining parameters online [55].) A2 (description)
always i.e., for the three IR models and the three studied
projects, belongs to the bottom group and never belongs
to the top group, meaning that A2 is always significantly
worse than at least one other value. A3 (title and de-
scription) almost always belongs to the top group: in
one instance (LDA model, Eclipse), A3 is in the second
group. A1 (title) is similar in that it is usually in the
top group (2 exceptions: LSI model, Eclipse; and LSI
model, Jazz). Since both A1 and A3 include the title of the
bug report, and A2 does not, we theorize that including
the title from the bug report representation is most
important; whether you also include the description is
of secondary importance. This result is likely because
the bug descriptions introduce noise into the IR models,
since the descriptions often include stack traces. Stack
traces have the names of several files and methods,
which can lead the IR model in the wrong direction.
In contrast, the title is typically carefully constructed to
exactly summarize the problem.

4.2.2 Source Code Entity Representations
The best choice of source code entity representation dif-
fers between the studied projects. In Mozilla and Jazz, B6
(all available data: identifiers, comments, and past bug
reports) belongs to the top group no matter the IR model.
Therefore, in these studied projects, more information is
better. In addition, B4 (all past bug reports) and B5 (last
10 bug reports) do not belong to the top group in any of
the IR models, indicating that identifiers and comments
play a more important role in these studied projects.

In Eclipse, on the other hand, B4 and B5 belong to
the top group for all three IR models. B6 appears in the
top group for VSM, and the second of two groups for
LDA, and the second of four groups for LSI. Therefore,
in Eclipse, including past bug reports is most important;
including identifiers and/or comments is of secondary

importance.
One possible explanation for the difference between

studied projects is the number of snapshots in our
analysis. Our Eclipse dataset contains 16 snapshots,
compared to the 8 and 10 of Jazz and Mozilla, respec-
tively. Given the nature of our evaluation procedure,
any configuration using only PBRs will achieve low
performance during the first snapshot of the project,
since by definition the source code entities have not yet
been linked to any past bug reports. The IR models are
built on empty representations of the entities, and bug
localization is simply random. While all three studied
projects share this characteristic, it may be the case that
the additional snapshots in Eclipse help to mitigate the
effects of the poor performance of the first snapshot,
since the top-20 metric is averaged across all snapshots.
Further investigation is needed to verify this possible
explanation.

Overall, we conclude that B6 (all) is the best: For
Mozilla and Jazz, B6 is always in the top group; in
Eclipse, B6 is always in one of the top 2 groups. Note
that B6 is suited to cases when there are no past bug
reports to which to link the entities, since identifiers and
comments are also included.

4.2.3 Preprocessing Steps
C7 (stopping, stemming, and splitting) is in the top
group for all studied projects and all IR models; it is the
only parameter value that is. C4 (split and stop) is almost
always in the top group (one exception: LDA applied to
Jazz). C6 (stop and stem) is almost always in the top
group (two exceptions). C2 (stop) is in the top group in
all but four cases. C1 (split) is almost never in the top
group; it is only twice. C3 (stem) is in the top group only
once. Finally, C0 (none) is always in the bottom group,
never in the top group. We conclude that performing
all three preprocessing steps is most beneficial, and
removing stop words is the most important of the three
steps. Removing stop words helps to reduce the size of
the vocabulary and thus concentrates the information
content of each document. Splitting and stemming do
the same, yet are slightly less effective for source code.

4.2.4 IR Model Parameters
4.2.4.1 VSM parameters: For VSM, tf-idf (D1)

weighting is always (i.e., for each studied project and
each IR model) best, and sublinear tfi-df (D2) is al-
ways second best, and boolean (D3) weighting is always
last. These results are consistent with research in other
domains [31], as tf-idf is the most popular weighting
scheme. Cosine similarity (E1) is always better than
overlap similarity (E2).

4.2.4.2 LSI parameters: For LSI, sublinear tf-idf
(F2) is always best, tf-idf (F1) is always best or second
best, and Boolean (F3) is always last.

The best number of topics depends on the studied
project. In Mozilla, 64 and 128 topics are best. In Eclipse,
256 topics is best. In Jazz, 128 and 256 topics are best.
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These are roughly proportional to the number of lines of
code in each studied project, suggesting that the number
of topics should be selected based on the size of the
studied project.

4.2.4.3 LDA parameters: For LDA, it appears that
more topics are better, but there are no significant dif-
ferences in any studied project between 64, 128, and
256 topics. Thirty-two topics, however, is always signif-
icantly worst.

4.2.5 Entity Metrics
The HSD statistical test is not appropriate for the EM-
based classifiers, since there are only four configurations
total. Instead, we use Table 6 to discuss the results.

In all three studied projects, the new bug count metric
(EM.M3) has the best performance. This is consistent
with previous research [48]. In fact, in all three stud-
ied projects, the EM.M3 classifier has comparable or
better performance than the best LDA configuration,
even though EM.M3 does not make use of the textual
data of the bug report or source code in any way. This
somewhat surprising result agrees with current research
in defect prediction, which has repeatedly shown that
prior bug counts are good predictors of future bugs [36].
Coupled with the observation that the majority of bugs
in any given project are found in only a small subset
of the entities [42], [43], it is understandable that for
most new bug reports, the relevant entities will have
a history of bug-proneness. The second best performing
EM-based classifier also incorporates bug information:
EM.M4 is the cumulative bug count metric. The other
two entity metrics, EM.M1 and EM.M2 perform worse
in each studied project.

From these results, we make two conclusions. First,
some EM-based classifiers can perform at least as well
as some IR-based classifiers. Second, entity metrics based
on previous bug counts are better than those based on
LOC or churn metrics.

The best individual IR-based classifier uses the Vector
Space Model, with the index built using tf-idf term
weighting on all available data in the source code en-
tities (i.e., identifiers, comments, and past bug reports
for each entity), which has been stopped, stemmed, and
split, and queried with all available data in the bug
report (i.e., title and description) with cosine similarity.

5 COMBINATION FRAMEWORK

There is a rich literature in the pattern recognition
and data mining domains for combining classifiers, also
known as classifier ensembles, voting experts, or hybrid
methods [21], [24], [35]. No matter the name used, the
fundamental idea is the same: individual classifiers often
excel on different inputs and make different mistakes.
For example, one IR-based classifier might be good
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Fig. 2. An illustration of the classifier combination frame-
work. Here, three classifiers are created, based on the
available input data and the given bug report. Then, the
classifiers are combined, using score addition, to produce
a single ranked list of source code entities. In this exam-
ple, fileX bubbles up to the top of the combined list since
it is high on each of the three classifiers’ lists.

at finding links between bug reports and source code
entities if they share one or more exact-match key-
words, which might happen if the bug report explicitly
mentions the variable names or method names of the
relevant source code entity. Another IR-based classifier
might be good at finding links between general concepts,
such as “GUI” or “networking”, even if no individ-
ual keywords are shared between the bug report and
relevant entity. An entity metrics-based classifier might
be good at determining which source code entities are
likely to be bug-prone in the first place, regardless of
the specific bug report in question. By combining these
disparate classifiers, the truly-relevant files are likely to
“bubble up” to the top of the combined list, providing
developers with fewer false positive matches to investi-
gate. While classifier combination has been successful in
other domains and recently even other areas of software
engineering [25], classifier combination has not been
investigated in the context of bug localization.

We present a framework to combine multiple bug
localization classifiers, based largely on methods from
other domains and illustrated in Figure 2. The frame-
work consists of two main constituents.

1) Any number of classifiers are created, based on
the available input data and the given bug report.
Exactly which classifiers are used can have an effect
on the performance of combination; we discuss this
issue more in Section 5.2.

2) The classifiers are combined using any of several
combination techniques, such as Borda Count [59],
score addition, or reciprocal rank fusion [11].

We now describe each constituent in more detail.
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5.1 Creation of Classifiers

As mentioned in Section 3, classifiers can come in many
forms. IR-based classifiers attempt to find textual sim-
ilarities between the given bug report and the source
code entities. Entity metric-based (EM-based) use entity
metrics [62], such as lines of code, to classify which
source code entities are likely to have the largest number
of bugs, independent of the given bug report (which, as
we found in Section 4.2, has surprisingly good perfor-
mance). In fact, we consider any variant of any technique
that returns a ranked list of source code entities as a
classifier. Formally, we define the result set of a classifier
Ci, which operates on a given bug report qj , as

Ci(qj) =
{(
r(dk), s(dk)

)
∀dk ∈ D

}
where r(dk) is the rank of entity dk, s(dk) is the score of
entity dk, according to Ci, and D is the set of all entities
in the project. The result set of a classifier consists of a
rank and a (relevancy) score for every source code entity
in the project. Note that scores need not be unique; in
fact, many entities may be assigned a score of 0. In this
case, they all share a rank of M + 1, where M is the
number of entities that received a non-zero score.

It is well established that the choice of classifiers that
are used will effect the performance of the combina-
tion [21]. As classifier combination works best when the
individual classifiers err in different ways, choosing clas-
sifiers that are likely to result in the most uncorrelated
mistakes—such as classifiers based on different input
data representations—is likely to achieve the best result.

Defining Classifier Subspaces. Recall that for IR-based
classifiers, two data sources must be represented: that
of the source code entity, and that of the bug report.
Accordingly, we define four IR classifier subspaces that
are based on four different input data representations,
using the notation from the configuration framework
(Section 3), as follows. The first subspace consists of
those classifiers that use the entities’ textual content
(B3: identifiers and comments) and the bug reports’
titles (A1). The classifiers in the second subspace use
the entities’ textual content (B3) and the bug reports’
descriptions (A2). The classifiers in the third subspace
use the entities’ past bug reports (B5) and the bug
reports’ titles (A1), the bug reports’ descriptions (A2).

Given that there are thousands of individual classifiers
in the context of bug localization, and each classifier is
computationally expensive to create, it is in our interest
to choose a subset of classifiers in each subspace to
create and combine. We describe two basic techniques
for choosing which classifiers to combine: combining the
best performing individual classifiers in each subspace,
and combining random sets of classifiers from each
subspace.

Combining the Best Classifiers. In order to combine the
best IR classifiers, then, we select the best classifier from
each of the four subspaces. Should we want to combine

the best eight IR classifiers, for example, then we select
the best two classifiers from each subspace, and so on.

Combining Random Classifiers. If we do not know in
advance which classifiers from each subspace perform
best, we still use the subspaces to create so-called intelli-
gently random sets of classifiers. Here, we select random
classifiers with an equal probability from each of the four
subspaces, so that we decrease the likelihood that the
wrong answers from each classifier will be correlated in
any way.

5.2 Combination Techniques
Given a set of |C| classifiers, we can combine them in any
of several ways. A simple rank-only combination is the
Borda Count method [59], which was originally devised
for political election systems. For each source code entity
dk, the Borda Count method assigns points based on the
rank of dk in each classifier’s result set. For example,
if classifier Ci assigned dk a rank of 1, then the Borda
Count for dk would be M -1, where M is the number of
entities that received a non-zero score in Ci. The entity
as rank 2 would receive a score of M -2, and so on. The
Borda Count scores for all |C| classifiers are tallied for
each entity, and the entity with the highest total Borda
Count score is ranked first, and so on. Formally, the score
for an entity dk is defined as

Borda(dk) =
∑
Ci∈C

Mi − r(dk | Ci), (1)

where Mi is the number of entities that received a non-
zero score in Ci, and r(dk | Ci) is the rank of entity dk in
Ci. The entities are then ranked according to their total
Borda score.

Instead of using the ranks, the scores of each classifier
can also be used. For example, the score of each entity
dk and each classifier Ci is summed to produce a total
score for each entity:

ScoreAddition(dk) =
∑
Ci∈C

s(dk | Ci). (2)

Usually, the scores of each classifier are scaled to be in
the same range (e.g., [0,1]) before combination to avoid
unintentionally weighting the importance of certain clas-
sifiers. However, Equations (1) and (2) can be modified to
explicitly weight certain classifiers differently from oth-
ers, for example to scale the best-performing classifiers
in the range of [0,2]. We leave the investigation of such
weighting schemes for future work.

We note that the result of combining |C| classifiers
defines a new classifier. This classifier can itself be
combined with other classifiers. In this way, a hierarchy
of classifiers can be constructed.

6 CASE STUDY 2: DOES COMBINATION
HELP?
This case study investigates the performance improve-
ments that are achieved by combining classifiers, using
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TABLE 9
Classifier sets under consideration.

|C| C = Classifiers

CS1 5 VSM.A1.B3.C7.D1.E1, VSM.A2.B3.C7.D1.E1,
VSM.A1.B5.C7.D1.E1, VSM.A2.B5.C7.D1.E1, EM.M3

CS2 5 LDA.A1.B3.C7.J256, LDA.A2.B3.C7.J256,
LDA.A1.B5.C7.J256, LDA.A2.B5.C7.J256, EM.M3

CS3 5 LSI.A1.B3.C7.F2.G128, LSI.A2.B3.C7.F2.G128,
LSI.A1.B5.C7.F2.G128, LSI.A2.B5.C7.F2.G128, EM.M3

CS4 13 CS1 ∪ CS2 ∪ CS3

the combination framework introduced in Section 5.
We present two experiments: one to test the perfor-
mance of combining the best-performing individual clas-
sifiers, and another to test the performance of combining
“intelligently-random” sets of classifiers. In both exper-
iments, we use the same projects, data collection algo-
rithm, performance metrics, and evaluation technique as
case study 1 (Section 4).

6.1 Experiment 1: Combining the Best Individual
Classifiers

In this experiment, we investigate whether combining
the best-performing classifier configurations can im-
prove performance.

6.1.1 Experiment Design

We define four classifiers sets, CS1–CS4, shown in Ta-
ble 9. CS1 contains the best VSM classifier from each
of the four subspaces identified in Section 5.1. For each
subspace, we use the results of case study 1 (Section 4)
to determine the best classifier in the subspace. CS1 also
includes the best-performing EM classifier, EM.M3.

We define similar sets based on LDA (CS2 in Table 9)
and LSI (CS3). Finally, we take the union of the sets in
CS1–CS3 to create a new set, CS4, with 13 classifiers.

The classifier sets CS1–CS3 each contain five classi-
fiers that (a) operate on independent data representa-
tions (e.g., the identifiers and comments will be very
different from the past bug reports) and (b) have optimal
values for the other parameters. Thus, we expect that
combining these classifiers will increase overall perfor-
mance.

For each of the classifier sets defined above, we
consider two combination techniques: the Borda Count
method (BRD) and the score addition method (ADD),
each described previously in Section 5.2. We run each
classifier set on all 8,084 bugs reports in the three studied
projects, and calculate the top-20 performance of each
classifier set.

6.1.2 Results

Table 10 shows the top-20 performance of the four clas-
sifier sets, as well as their relative performance improve-
ments over the best individual classifier in the sets, for

both the Borda Count and score addition methods. The
relative improvement of classifier set CS is calculated as

RI(CS) =
top-20(CS)−maxCi∈CS

(
top-20(Ci)

)
maxCi∈CS

(
top-20(Ci)

) .

In all three studied projects, classifier combination
improves performance for all classifier sets, often sig-
nificantly. In Jazz, for example, classifier set CS2, which
combines four LDA configurations and EM.M3, results
in a 95% relative improvement over the best individual
classifier, going from a top-20 performance of 33% to a
top-20 performance of 64%. We find similar results for
each of the other studied projects, classifier sets, and
combination techniques, indicating that combining the
best performing classifiers can improve bug localization
performance.

6.2 Experiment 2: Combining Random Classifier
Sets

We conduct a second experiment to investigate whether
classifier combination helps in situations where the best
configuration of each classifier is not known in advance.

6.2.1 Experiment Design
Similar to Experiment 1, we define classifier sets with
five classifiers: one from each of the four IR subspaces,
and one based on entity metrics. However, in this exper-
iment, we do not use the best classifier from each of the
four IR subspaces. Instead, we choose one at random.

Specifically, we build a random classifier set with the
following classifiers (using regular expression notation):
VSM.A1.B3.*.*.*, VSM.A2.B3.*.*.*, VSM.A1.B5.*.*.*,
VSM.A1.B5.*.*.*, and EM.*. We build 50 such sets,
each time randomly choosing values for the varying
parameters (i.e., “*”). We do the same for LDA and LSI,
yielding a total of 150 randomly-generated classifier
sets. (We enumerate the sets online [55].) By randomly
choosing classifiers from each subset, we can examine
the effects of many situations: combining good classifiers
with bad classifiers; bad with bad; and so on.

For each classifier set, we again consider two combi-
nation techniques: the Borda Count method (BRD) and
the score addition method (ADD). We run each classifier
set on all 8,084 bugs reports in the three studied projects,
and calculate the top-20 performance metric.

6.2.2 Results
Table 11 shows the percentage of the 150 classifier sets
that were improved by combination, in terms of top-
20 performance. Overall, classifier combination helps in
the large majority of sets. In Eclipse, 93% or 84% of the
classifier sets had a better performance after combina-
tion, depending on whether the Borda Count or score
addition methods were used, respectively. In Mozilla,
the results were even better: 88% or 96% of the classifier
sets improved after combination. The best results came
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TABLE 10
Top-20 performance of the four manually-created classifier sets, CS1–CS4 (see Table 9), and their relative

improvements over the best individual classifier in the sets.

Performance of Performance of combined classifiers
best individual Borda Relative Score Relative

classifier count improvement (%) addition improvement (%)

Eclipse

CS1: 4 VSM + Best EM 0.467 0.706 +51.2 0.666 +42.7
CS2: 4 LDA + Best EM 0.405 0.522 +28.9 0.464 +14.8
CS3: 4 LSI + Best EM 0.405 0.708 +75.1 0.661 +63.3
CS4: 4 VSM + 4 LDA + 4 LSI + Best EM 0.467 0.699 +49.5 0.640 +37.0

Jazz

CS1: 4 VSM + Best EM 0.576 0.739 +28.4 0.737 +28.1
CS2: 4 LDA + Best EM 0.330 0.643 +95.0 0.568 +72.2
CS3: 4 LSI + Best EM 0.438 0.732 +67.3 0.721 +64.7
CS4: 4 VSM + 4 LDA + 4 LSI + Best EM 0.576 0.697 +21.1 0.694 +20.7

Mozilla

CS1: 4 VSM + Best EM 0.739 0.844 +14.2 0.837 +13.3
CS2: 4 LDA + Best EM 0.667 0.787 +18.0 0.717 +7.6
CS3: 4 LSI + Best EM 0.703 0.836 +18.9 0.820 +16.6
CS4: 4 VSM + 4 LDA + 4 LSI + Best EM 0.739 0.815 +10.3 0.818 +10.7

in Jazz, where 97% and 100% of classifiers sets were
improved.

Table 11 also quantifies the amount of improvement
the classifier sets experienced after combination. The
median relative improvements for Eclipse were 39% and
37% for the Borda Count and score addition methods,
respectively. This means that for a random combination
of classifiers, one can expect performance to improve by
at least 37%. The same is true for the other two studied
projects: in Jazz, the mean relative improvements were
57% and 54%, and in Mozilla they were 14% and 18%.

Classifier combination—based on the four subspaces
of classifiers—helps in almost all cases, no matter the
underlying classifiers used, or the specific combination
technique used.

7 MAIN FINDINGS AND DISCUSSION

We highlight the main findings from each case study,
and provide a discussion of results.

7.1 Classifier Configuration
From our analysis of 3,172 classifiers (Section 4), each
evaluated on 8,084 bug reports, we make the following
conclusions.
• Configuration matters: the performance difference

between one classifier configuration and another is
often significant.

• The VSM classifier can achieve the best overall top-
20 performance. LSI is second, and LDA is last.

• Using both the bug report’s title and description
results in the best overall performance, for all IR
models.

• Using the source code entities’ identifiers, com-
ments, and past bug reports results in the best
overall performance, for all IR models.

• Stopping, stemming, and splitting all improve per-
formance, for all IR models.

• New bug count is the best-performing entity metric.

No single classifier is best for all three studied projects.
However, a configuration of the VSM classifier has the
best performance for all studied projects, suggesting that
VSM is the overall best classification technique for bug
localization. For all studied projects, VSM > LSI > LDA,
when considering the performance of each technique’s
best configuration.

Interestingly, for all studied projects, if we consider the
worst configurations of the various IR models (VSM, LSI,
and LDA), LSI achieves the highest performance, often
significantly so. In Mozilla, for example, the worst LSI
configuration has a performance of 23%, compared to
VSM’s 6% and LDA’s 0%.

Bug localization in Mozilla is relatively easy compared
to the other studied projects: the best top-20 for Mozilla
is 80%, compared to Jazz’s 69% and Eclipse’s 55%. We
also note that Mozilla has the smallest number of LOC,
Jazz the second smallest, and Eclipse the largest.

In general, we find that more is better: take all the
bug report data you can (A3); take all the entity data
you can (B6); and do all the preprocessing steps you
can (C7). Each of these parameter values had the best
overall performance across the various IR models and
studied projects.

We stress that the configuration of a classifier has a
significant impact on its results. The difference between
the best and worst configuration is large; even small
differences (e.g., deciding not to remove stop words)
can result in large performance variations. Researchers
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TABLE 11
Improvement of classifier combination in 150 randomly-generated classifier sets. We show the percentage of

classifier sets in which the performance of the combination was better than the performance of the best individual
classifier in the set. We also report summary statistics of the relative improvement that combination provides.

% of sets improved Summary of relative improvements provided by combination
by combination Min 1st Qu. Med. Mean 3rd Qu. Max.

Eclipse Borda Count 92.7 -20.0 17.7 39.4 37.2 55.1 121.0
Score addition 84.0 -33.9 14.7 36.9 35.1 55.9 95.0

Jazz Borda Count 97.3 -16.3 37.6 56.8 56.1 72.8 142.2
Score addition 100.0 0.3 43.0 54.4 54.3 65.7 114.3

Mozilla Borda Count 88.0 -37.7 7.3 14.4 13.9 22.2 53.7
Score addition 96.0 -6.1 12.5 17.8 19.2 24.3 56.5

and practitioners should be careful when configuring
their bug localization classifiers. Overall, we recommend
the VSM.A3.B6.C7.D1.E1 classifier (VSM using the bug
report title and description, the source code entities’
identifiers, comments, and past bug reports, prepro-
cessed by splitting, stopping, and stemming, using tf-
idf weighting, and using the cosine similarity metric),
for two reasons. First, it achieves the best performance
in Eclipse and the second best performance in Jazz and
Mozilla. In addition, all the configuration settings (i.e.,
A3, B6, C7, D1, and E1) were shown to be optimal by
Tukey’s HSD statistical test.

7.2 Classifier Combination
Based on the results of our case study on classifier
combination, we conclude that:
• Combining the best-performing classifiers always

improves performance, by at least 10% and up to
95% in top-20 performance, compared to the best
performing individual classifier.

• Combining “intelligently-random” sets of classifiers
almost always helps (84–100% of the time), and
usually helps by a large amount: a median of 14–
56% improvement in top-20 performance, compared
to the best performing individual classifier..

• The Borda Count combination method is always
comparable or better than the score addition
method.

These results provide strong evidence that classifier
combination is a valuable method for improving bug
localization performance.

We saw the smallest relative improvements in Mozilla,
and the largest in Eclipse. We note that individual classi-
fiers in Mozilla already have high performance (i.e., top-
20 values above .80), leaving little room for improvement
for combination. Individual classifiers in Eclipse, on
the other hand, have relatively worse performance (a
maximum top-20 value of 0.54).

In general, the Borda Count combination method per-
formed better than the score addition method. In all four
manually-created classifier sets, and all studied projects
(Table 10), the Borda Count offered a greater improve-
ment than score addition (with one exception: the Borda

Count method in CS4 in Mozilla had a relative improve-
ment of 10.3%, compared to score addition’s 10.7%). In
addition, when considering the 150 randomly-created
classifier sets, the Borda Count method offered better
mean and median relative improvements over score
addition, for the Eclipse and Jazz projects (Table 11). In
Mozilla, the mean and median relative improvements of
Borda Count and score addition were comparable.

In both experiments, we combined sets of five compo-
nent classifiers, based on the logic that classifiers using
different data sources as input will result in uncorrelated
errors. We also investigated combining all 3,172 compo-
nent classifiers of Case Study 1. We found that the top-20
performance of their combination to be comparable to
the top-20 performance of the best individual classifier.
(Specifically, the relative improvements ranged from -
2% to +12%, depending on the studied project and
combination method used.) Given that the set of 3,172
contains many classifiers with very low performance, it
is encouraging that their combination still achieves such
high performance. This combination can be practically
useful, not to improve on the best individual classifier,
but to allow us to achieve close to the best performance
without needing to identify the best-performing individ-
ual classifier.

8 THREATS TO VALIDITY

This section discusses potential threats to the validity of
our case studies.

Internal Validity. One potential threat to the internal
validity of our case studies is our ground truth data
collection algorithm, which was based an algorithm pro-
posed by Fischer et al. [18]. Even though the algorithm is
the state-of-the-art algorithm for linking bug reports to
source code entities, recent research has questioned the
algorithm’s linking biases [3], since some change sets in
the revision control system may not explicitly mention
which bug reports are related. However, Nguyen et al.
find that this bias exists even in a near-ideal dataset with
high quality linking, indicating that the bias is a symp-
tom of the underlying development process rather than
the data collection methodology [41]. Another potential
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threat to the internal validity of our study is that of false
negatives in our ground truth data. Specifically, our truth
data contains links between bug reports and those source
code entities that were actually changed to resolve the
bug report. However, it may be the case that other source
code entities could have been changed instead to resolve
the same bug report. Both internal threats are mitigated
in our work because whatever biases or false negatives
exist, we use the same truth dataset in the evaluation of
all classifiers and combination techniques, providing an
equal platform for comparison.

External Validity. A potential threat to the external
validity of our study is that even though we performed
three extensive case studies on large, active, real-world
projects, our results still must be considered in context.
In particular, our studied projects represent only a frac-
tion of all real-world projects, domains, programming
languages, and development paradigms, so we cannot
definitively say that our results will hold for all possible
projects. We have provided our data and tools online to
encourage others to replicate our work on other projects.

Construct Validity. A potential threat to the construct
validity of our case studies is our use of the top-20 metric
(Section 4.1.5) as a proxy for developer effectiveness.
While the top-20 metric is the standard metric for evalu-
ating bug localization performance, additional research
is needed to see how well it correlates with developer
effectiveness in real-world situations.

9 CONCLUSIONS AND FUTURE WORK

Solving the bug localization problem has major impli-
cations for developers, since it can dramatically reduce
the time and effort required to maintain software. In
this paper, we cast the bug localization problem as
one of classification, and analyzed the effect classifier
configuration had on bug localization performance, as
well as whether classifier combination could help. We
summarize our main findings as follows.
• The configuration of an IR-based classifier matters.
• The best individual IR-based classifier uses the Vec-

tor Space Model, with the index built using tf-
idf term weighting on all available data in the
source code entities (i.e., identifiers, comments, and
past bug reports for each entity), which has been
stopped, stemmed, and split, and queried with all
available data in the bug report (i.e., title and de-
scription) with cosine similarity.

• The best EM-based classifier uses the new bug count
metric to rank source code entities.

• Classifier combination helps in almost all cases, no
matter the underlying classifiers used, or the specific
combination technique used.

We proposed two frameworks: one for defining and
analyzing classifier configurations, and one for combin-
ing the results of disparate classifiers. We used these
frameworks to conduct our empirical case studies on

bug localization; researchers can use our frameworks
to conduct similar analyses in other areas that consider
multiple configurations of classifiers.

We found that the configuration of a classifier has
a significant impact on its performance. In Eclipse, for
example, the difference between a poorly configured IR
classifier and a properly configured IR classifier is the
difference between having a 1 in 100 chance of finding
a relevant entity in the top 20 results and having better
than a 1 in 2 chance. We found that prior bug localization
research does not use optimal classifier configurations.
Fortunately, we also found consistent results of the
various configurations across all three studied projects,
suggesting that the proper configuration is completely
project specific, and can be applied in a general context.

By identifying which classifier configurations are best,
and how to combine them in the most effective way,
our results substantially advance the state-of-the-art in
bug localization. Practitioners can use our results to
accelerate the task of finding and fixing bugs, resulting
in increased software quality and decreased maintenance
costs. We provide our data, tools, and results online [55].

Since IR-based bug localization has only recently
gained the attention of researchers, there are many excit-
ing avenues to explore in future work. The most obvious
avenue is the addition of classifier families to the combi-
nation framework presented in this paper, such as those
used for concept location: PageRank [44], [50]; formal
concept analysis [47]; dynamic analysis [46]; and static
analysis [34]. Additional IR models can be considered,
such as BM25F [51], BugScout [40], and other variants of
LDA, such as the Relational Topic Model [9]. Recently, re-
searchers have proposed query expansion techniques [8],
which may be a useful preprocessing step to any IR-
based classifiers. We also wish to investigate whether
preprocessing bug reports by removing noise in the form
of stack traces and code snippets could be beneficial to
bug localization results. Finally, we have yet to fully
investigate many possible combination techniques, such
as variants of the Borda Count and Reciprocal Rank
Fusion [11].
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