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Abstract—A good understanding of the factors impacting defects in
software systems is essential for software practitioners, because it
helps them prioritize quality improvement efforts (e.g., testing and code
reviews). Defect prediction models are typically built using classification
or regression analysis on product and/or process metrics collected at
a single point in time (e.g., a release date). However, current defect
prediction models only predict if a defect will occur, but not when, which
makes the prioritization of software quality improvements efforts difficult.
To address this problem, Koru et al. applied survival analysis techniques
to a large number of software systems to study how size (i.e., lines of
code) influences the probability that a source code module (e.g., class
or file) will experience a defect at any given time. Given that 1) the
work of Koru et al. has been instrumental to our understanding of the
size-defect relationship, 2) the use of survival analysis in the context of
defect modelling has not been well studied and 3) replication studies
are an important component of balanced scholarly debate, we present
a replication study of the work by Koru et al. In particular, we present
the details necessary to use survival analysis in the context of defect
modelling (such details were missing from the original paper by Koru et
al.). We also explore how differences between the traditional domains of
survival analysis (i.e., medicine and epidemiology) and defect modelling
impact our understanding of the size-defect relationship. Practitioners
and researchers considering the use of survival analysis should be
aware of the implications of our findings.

Index Terms—Survival Analysis; Cox Models; Defect Modelling

1 INTRODUCTION

Modelling defects in software systems is essential for
software maintenance and quality assurance. Practition-
ers must understand which metrics are good indica-
tors of software defects to best allocate their limited
resources to the most defect-prone source code modules
(e.g., classes or files) in their systems [1], [2]. Existing
defect modelling techniques typically use classification
or regression analysis on product (e.g., the number of
lines of code) and/or process (e.g., code churn) metrics
associated with source code modules [3], [4].

Most modelling techniques collect their metrics at a
single point in time, such as a major release, then model
which source code modules are most likely to experience
a defect in the near future. In doing so, these models
ignore the aspect of time. Since the defect-proneness of
modules changes over time as releases come and go, and
requirements or features change, models get outdated
relatively soon (i.e., “concept drift” [5], [6]) and must be

re-built. Further, the models can only give a probability
of the occurrence of a defect in the next period, they
fail to model how much time it will take before a defect
occurs. Yet, such information is critical for practitioners
to schedule their quality assurance efforts.

The modelling of defects in source code modules can
be formulated as a time-to-event problem. Taken from
the field of medicine and epidemiology, time-to-event
analysis or survival analysis aims to determine 1) what
factors (i.e., covariates) affect the time-to-event and 2)
who or what (i.e., subjects) will experience an event
given an interval of time. At the heart of survival anal-
ysis are two interrelated functions. The survival function
describes the probability that the subject will not expe-
rience an event before time t (i.e., the probability that
the subject will survive at least until time t). The hazard
function describes the instantaneous event occurrence
rate, the hazard rate, at time t (i.e., the number of events
per unit of time at time t).

Traditionally, survival analysis is used to determine
how covariates (e.g., age, white blood cell count and
frequency of treatment) affect the length of time before
a medical condition is either contracted (e.g., the start of
flu season to contracting the flu) or cured (e.g., contract-
ing the flu to being cured).

Koru et al. formulated the modelling of defects in
source code modules as a time-to-event problem. The
authors were amongst the first empirical software en-
gineering researchers to use survival analysis for defect
modelling [7]–[9]. Koru et al. used survival analysis tech-
niques to study how size (i.e., lines of code) influences
the probability that a source code module will experience
a defect at any given time. The authors found that the
hazard rate increases at a slower rate than module size.
This indicates that larger modules proportionally are less
defect-prone (i.e., the number of defects per line of code
is higher in smaller modules).

Although survival analysis has shown promising re-
sults for modelling defects, care should be taken when
transferring approaches and ideas from different fields
to software engineering. Major differences exist be-
tween the traditional domains of survival analysis (i.e.,
medicine and epidemiology), and defect modelling. We
consider two of these differences.
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First, defect fix data (i.e., data describing when de-
fects are fixed) is much easier to obtain than defect
introduction data (i.e., data describing when defects are
introduced), therefore, software practitioners currently
build models that predict when a defect will be fixed
(being cured of the flu) instead of when a defect will
be introduced (contracting the flu). However, in order
to best prioritize quality improvement efforts, software
practitioners need to understand when defects are in-
troduced. In traditional defect models, defect fix data
is a good approximation for defect introduction data
because all time information is collapsed when building
the model for a particular point in time (i.e., the time
difference between defect introduction and fix becomes
almost irrelevant). On the other hand, survival analysis
explicitly takes time information into account, making it
likely that the approximation of defect introduction data
by defect fix data no longer holds.

Second, events tend to be modelled along a continuous
time scale (i.e., defects can be fixed/introduced at any
time). In practice, such events can only occur along a
discrete time scale (i.e., defects can only be fixed/in-
troduced when a revision is made). Survival analysis
experts recommend a discrete time scale be used when
observations can only be made at specific points in time
[10], [11]. Discrete time models have many advantages.
For example, they allow multiple events to occur simul-
taneously (i.e., multiple defects can be introduced/fixed
in a revision), whereas continuous time models assume
that only one event can occur at a given point in time.

The work of Koru et al. has been instrumental in the
community’s recent understanding of the relationship
between size and defects [7]–[9]. Therefore, in this paper,
we replicate the work of Koru et al. [8]. We also extend
this work by examining the impact of the two important
differences between the traditional domains of survival
analysis and defect modelling.

This paper makes three contributions:
1) We replicate the results of Koru et al. [8] and

provide details missing from the original paper.
2) We demonstrate the impact of modelling defect

introduction (as opposed to defect fix) events along
a discrete (as opposed to continuous) time-scale.

3) We provide a clear outline of how to use survival
analysis for defect modelling such that other re-
searchers can benefit from our experiences.

The paper is organized as follows: Section 2 presents
previous work in defect modelling and provides an
overview of survival analysis. Section 3 presents our
replication of the original study by Koru et al. [8].
Section 3.4 builds on our replication study using larger
projects and the diagnostics required for the proper
application of survival analysis. Section 3.7 presents the
results of our analysis using our new data formulation
(i.e., defect introducing events along a discrete time-
scale). Section 4 presents a discussion of our results.
Section 5 outlines the threats to the validity of our work.
Finally, Section 6 concludes the paper.

2 BACKGROUND AND RELATED WORK

2.1 Defect Modelling

Defect modelling has received substantial attention from
the empirical software engineering community [6], [12].
Researchers have studied the impact that product (e.g.,
number of lines of code and code complexity) [13]–
[16], process (e.g., code churn) [15]–[17] and social (e.g.,
code ownership and developer experience) [18], [19]
metrics have on defects in source code modules. Existing
methods have used regression, data mining and machine
learning techniques to model defects.

The importance of size (i.e., lines of code) in under-
standing software quality has been acknowledged by
many researchers. Size has consistently been found to
be one of the most important metrics when modelling
defects in source code modules [13]–[15], [17]. However,
there has not been a consensus on the functional form
(i.e., the exact mathematical form) of the size-defect
relationship.

Studies of defect density, a metric designed to account
for the size of a module by dividing the number of
defects by the number of lines of code, have typically
shown a “U” shaped relationship between defect density
and size [20]–[23]. The “U” shaped relationship between
defect density and size indicates that defect density has a
minimum value in medium-sized modules and is higher
in both smaller and larges modules. These conclusions
are generally referred to as the Goldilocks principle,
where the ideal module size is “not too small or not too
large” [24]. Software practitioners were recommended to
produce source code modules in this ideal size range.

However, researchers have been critical of the
Goldilocks principle and the defect density approach
to studying the size-defect relationship [24]–[26]. These
researchers claim that defect density masks the true size-
defect relationship, resulting in artificial correlations and
misleading conclusions. This claim is based on the notion
that defect density is artificially high in smaller modules
because the denominator (i.e., size) is small. These re-
searchers concluded that the Goldilocks principle is an
artifact produced by the analysis and not a result of the
size-defect relationship.

Koru et al. identified gaps in the existing literature and
applied survival analysis techniques to a large number
of closed- and open-source software systems to study
the size-defect relationship [7]–[9]. The authors use Cox
Proportional Hazards (Cox) models, one of the most
popular models in survival analysis, to determine that
there is a power-law relationship between size and the
number of defects and that smaller source code mod-
ules are proportionally more defect-prone than larger
modules. These findings contradict the previous work
that showed that defect density has a “U” shape (i.e.,
defect density has a minimum value in medium-sized
modules). The work of Koru et al., the “Theory of
relative defect proneness” [8] in particular, is the focus
of our replication.
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Wedel et al. also demonstrated how survival analysis
techniques can be applied to enhance existing defect pre-
diction techniques [27]. The authors found the same size-
defect relationship as Koru et al. in Eclipse. However,
Wedel et al., similar to Koru et al., failed to properly
verify the underlying assumption of the Cox Propor-
tional Hazards model (discussed in the Section 2.2.2).
Further, Wedel et al. used simulated data by assuming
that defects occur uniformly over time, as opposed to
determining the actual timing of events. When formu-
lating the modelling of defects in source code modules
as a time-to-event problem, the actual timing of events
is necessary.

Gehan et al. use survival models to study the defect-
proneness of methods in two open-source projects using
code predictors (e.g. lines of code) and clone predictors
(e.g., number of clone siblings) to determine the impact
of code clones on software defects [28]. However, the
authors limited their analysis to source code files with
file sizes within a particular range where the underlying
assumptions of their Cox models were satisfied [28].

2.2 Survival Analysis

Survival analysis consists of a wide range of models
and techniques for modelling the time-to-event. These
techniques vary in their underlying statistical framework
(i.e., parametric, semi-parametric and non-parametric
models) and model of event occurrences (i.e., terminat-
ing and recurring events). However, these techniques
share the same aims: 1) to model the time between
a start event and another event of interest (i.e., the
“survival time”) and 2) to model the factors that affect
this survival time. The following two sections discuss: 1)
the data required for survival analysis and 2) one of the
most popular models in survival analysis (i.e., the Cox
Proportional Hazards model).

2.2.1 Survival Data and the Counting Process Format

The data required for survival analysis is composed of
one or more observations for each subject in the study.
Each observation describes the state of a subject during
a particular time period that ends with an event oc-
currence. For example, an observation may describe the
health (state) of a patient (subject) between patient exams
(event occurrences). The state of a subject is described by
one or more covariates. Covariates are variables that are
collected at each event occurrence and may or may not
have predictive power over the time to the event (the
predictive power of these variables is often the focus
of a study involving survival analysis). Depending on
the study, there may be multiple observations over suc-
cessive time periods for each subject. For example, one
observation per annual patient exam. Each observation
must include the following fields:

1) ID – a unique identifier for each subject (e.g.,
patients) in the study.

2) Start – the time of the start event/the start time of
the observation period.

3) End – the time of the end event/the end time of
the observation period.

4) Event – an indicator for whether this observation
period ends with an event (e.g., whether the patient
is alive at the End time).

5) Covariate(s) – one or more covariates that describe
the state of the subject (e.g., white blood cell count)
at the time of the start event/the start time of the
observation period.

The above data format is the Counting Process Format.
This format can easily accommodate multiple events of
the same or differing types, time-dependent covariates
and discontinuous observation periods.

There are two key choices that must be made when
constructing survival data. First, we must define the
events. Second, we must define how time is measured
between the events.

Three types of events exist within survival data: start-
ing events, terminating/recurring events and censoring
events. These events are defined as:

1) Starting event – the first observation of a subject.
2) Terminating/Recurrent event – the event of interest

(possibly occurring more than once if the event is
recurrent).

3) Censoring event – an event that is not the event of
interest.

The typical application of survival analysis attempts to
model subjects who may experience a single terminating
event, such as the time from a patient’s diagnosis to
his/her death. For example, in a clinical trial of a new
drug designed to prevent fatal heart attacks, clinicians
would follow up with each patient in the study to
determine how they died. Some patients may suffer a
fatal heart attack (i.e., the event) and some will die from
other causes. However, it is impractical to continue the
study until every patient has died. Therefore, the study
will end after some time (e.g., five years). During the
study some patients will die from causes other than a
heart attack, some patients will withdraw from the study
and some patients will still be alive at the end of the
study. Despite the fact that we do not have the time-to-
event (i.e., the time from the start of the study until a
fatal heart attack) for these patients, their information is
still useful as it provides a lower bound for their survival
time. This partial information is called “censored” data
and the last date for which we have information on these
patients (e.g., the date the patient withdraws from the
study) is called a “censored” event.

Unlike many applications of survival analysis that
attempt to predict the time to biological death, which is
a terminating event, survival analysis in the context of
defect modelling typically needs to account for recurring
events. For example, when predicting defects in source
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code files, multiple bugs may be introduced into the file
at multiple points in time. Defects are not necessarily
fatal, since other defects may be introduced later. Sur-
vival models have been extended with counting process
theory to model subjects with recurrent events [29].

After we have defined the starting, terminating/recur-
ring and censoring events, we must define how the time
between events is measured. Event occurrences may
occur on one of three time scales:

1) Continuous – the event may occur at any time and
the “exact” time of the event is known (e.g., the
time of death).

2) Discrete – the event may occur at any time but
the exact time is not known (e.g., contraction of
a medical condition between patient exams).

3) Intrinsically discrete – the event may only occur
at certain points in time (e.g., transmission of a
genetic condition at birth).

Careful thought is required when selecting a model for
survival events (i.e., terminating versus recurrent), the
specification of the event types (i.e., start, censored and
terminating/recurring) and the measurement of time
between events (i.e., continuous, discrete or intrinsically
discrete).

2.2.2 Cox Proportional Hazard Models

One of the most popular models for survival analysis is
the Cox Proportional Hazards (Cox) model. It is a semi-
parametric model, i.e., the model has two components:
1) a nonparametric baseline function and 2) a parametric
function. Cox models assume that the hazard function
(i.e., the instantaneous event occurrence rate at some
time t for a particular subject i) has the following form:

λi(t) = λ0(t) × exp(X(t) × β) (1)

where λ0 is some unspecified baseline hazard function
that describes the instantaneous risk of experiencing an
event at some time, t, when the values of all covariates
are zero. X(t) is a vector of possibly time-varying co-
variates that are collected at each event occurrence that
may or may not have predictive power over the time to
the event. β is a vector of regression coefficients (i.e., one
coefficient for each covariate).

From Equation 1, we can determine that the relative
hazard between two subjects, i and j, depends only on
their covariate values. That is to say:

λi(t)

λj(t)
=

exp(Xi(t) × β)

exp(Xj(t) × β)
(2)

= exp(((Xi(t) −Xj(t)) × β) (3)

We can rewrite Equation 2 as the log-relative hazard:

log(
λi(t)

λj(t)
) = ((Xi(t) −Xj(t)) × β (4)

Equation 4 is called the Cox Proportional Hazards
assumption because the Cox model assumes that the
log-relative hazard between two subjects is linearly de-
pendent on the difference between their covariate values
and holds for all time. If a covariate tends to violate this
assumption, then the covariate needs to be transformed
using a link function to satisfy the assumption. A link
function, f(X(t)), transforms Equation 4 so that the
following relation will hold:

log(
λi(t)

λj(t)
) = (f((Xi(t)) − f(Xj(t))) × β (5)

In the event of multiple covariates, then f(X(t)) be-
comes a vector of link functions (i.e., one link function
for each covariate). When a link function is not needed
then f(X(t)) = X(t). A commonly used link function is
the natural logarithm. For defect modelling, Koru et al.
[8] used the natural logarithm as the link function for
the “number of lines of code” covariate.

Link functions are useful when a covariate of inter-
est violates the Cox Proportional Hazards assumption.
However, if the covariate is not of interest, but it is a
source of nonproportionality, we can stratify our models
across these factors. In a stratified Cox model, covariates
that are not of interest and may have nonproportional
effects are included in the baseline hazard function as
opposed to being used as a covariate. Stratifying a
Cox model by a covariate removes the nonproportional
effects the covariate had on the model without adding
an additional coefficient to the model. As a result, the
Cox model actually has multiple baseline hazards (i.e.,
one for each level of stratification).

3 THE REPLICATION STUDY

In the next three sections we present our three research
questions.

RQ1: Can we replicate the results in the original
study by Koru et al?

RQ2: Can we generalize the approach of Koru et al.
to additional software projects?

RQ3: What is the impact of using a different data
formulation?

Figure 1 provides a graphical overview of the process
for building and verifying Cox models that is used in
each of our research questions. We will examine different
aspects of this process in each of our research questions.
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Fig. 1: Overview of Event Modelling With Cox Models.

RQ1: CAN WE REPLICATE THE RESULTS IN THE
ORIGINAL STUDY BY KORU ET AL?
3.1 Motivation

Module size (i.e., lines of code) is one of the most im-
portant metrics used by software practitioners in defect
modelling. Researchers have found that module size is
one of the best predictors of defect-proneness, where
larger source code modules typically have a higher
number of defects. However, the functional form of the
relationship between module size and defect-proneness
is not well understood [24], [25], [30].

In an earlier study of defect-proneness in the Mozilla
project, Koru et al. found that a one unit increase in
the natural logarithm of size led to a 44% increase in
the rate of defect fixes [7]. These findings suggest that
defect-proneness monotonically increases with module
size, but at a slower rate. Consequently, smaller modules
are proportionally more defect-prone (i.e., the number
of defects per line of code is higher in smaller source
code modules). However, the exact functional form of
this relationship was not uncovered.

Building upon their earlier results and observations
[7], Koru et al. investigated the functional form of the
relationship between module size and defect-proneness
[8]. In particular, the authors tested their hypothesis
that smaller modules are proportionally more defect
prone. Koru et al. collected the history of each class
in ten open-source software projects. The authors fit a
Cox model to each project to model the relationship
between module size and the time-to-defect. Finally, the
authors extracted the relationship between module size
and defect-proneness from each of the Cox models.

Koru et al. performed their analysis in R, a software
environment for statistical computing, using two stan-
dard R packages [31]. The majority of their analysis was
performed using the Design package [32] (now known
as the rms package). However, the survival package had
to be used to obtain robust error estimates of the Cox
model coefficients (β̂) [33].

Many of the implementation details necessary for
replicating or extending the work of Koru et al. was
missing from the original paper. Therefore, based upon

the methodology and results presented in the original
paper [8] and our understanding of survival analysis
and defect modelling, we recovered the implementation
details that were missing from the original paper. We
use these implementation details, combined with the
functionality provided by the survival analysis packages
referenced by Koru et al., to reproduce the R scripts
used by Koru et al. We then use these R scripts to
reproduce the tables and figures from the original paper
(i.e., to verify that we have correctly recovered the miss-
ing implementation details), which are reported in the
remainder of this research question. Finally, we provide
a replication package in the appendix so that other
researchers may be able to use these techniques.

This research question allows the remainder of our
replication study to build upon a common foundation
with the original study by Koru et al.

3.2 Approach
Based upon the methodology and results presented in
the original paper by Koru et al. [8] and our under-
standing of survival analysis and defect modelling, we
recovered the implementation details that were missing
from the original paper. We exhaustively enumerate
each possible combination of implementation details and
compare the results with those presented in the original
paper by Koru et al. The results presented below are
based upon the implementation details which correctly
reproduce the results in the original paper.

3.2.1 Data Source
The dataset used in the original study by Koru et
al. is the KOffice dataset. The KOffice dataset consists
of ten open-source C++ projects that form a suite of
productivity software (e.g., word processor, spreadsheet
and presentation applications). Koru et al. collected the
history of each class in each project between April 18,
1998 (i.e., the date of the initial commit to the KOffice
source code repository) and January 19, 2006. A distinct
dataset was created for each of the ten KOffice projects.
Koru et al. have generously made the KOffice dataset
available through the PROMISE repository [34].
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3.2.2 Data Extraction
Extract Revision History: Koru et al. extracted the revision
history for each class in the project. The revision history
of a particular class contains the list of revisions, includ-
ing the date and time of the revision and the commit log
message (i.e., a description of the revision). Koru et al.
also measured the size (i.e., lines of code) of the class at
the time of the revision.

Identify Defect Fixes: Koru et al. identified defect fixes
by searching for the keywords “bug,” “fix” and “defect”
in the commit log messages of each revision.

Transformation to Counting Process Format: The revision
history extracted in the preceding sub-steps records the
following information for each revision of each class:
1) the date and time of the revision, 2) the size of
the class at the time of the revision and 3) a binary
indicator for whether this revision is a defect fix. Recall
that in Section 2.2.1, we described how survival data
was composed of one or more observations, with each
individual observation composed of a specific set of
fields. Koru et al. analyzed the history of each class in the
source code repository and created one observation for
each revision of each class. Each individual observation
was composed of the following fields:

1) ID – A unique identifier for each class in the study.
2) Start – The number of minutes between the previ-

ous revision to the class and this revision. The Start
time of the first revision is set to zero.

3) End – The number of minutes between this revision
and either 1) the next revision or 2) the end of the
study, whichever occurs first.

4) Event – An indicator (one or zero) of whether
this revision was a defect-fixing revision. Koru et
al. identified defect-fixing revision by mining the
commit log message of the revisions for a specific
set of keywords (i.e., “bug,” “fix” and “defect”).

5) Size – The covariate of interest, i.e., the number of
lines of code (excluding blank and comment lines)
in the class at the start time of this revision (i.e., the
class size after the revision was made). Size can,
and often does, change during each revision.

These rules easily allows for the modelling of class
deletions and changes in class size, something that is
quite difficult in traditional regression modelling. These
rules also allow for classes to be moved or renamed.
Table 1 shows the history of a hypothetical class for-
matted according to these rules, including the creation,
modification and deletion of the class.

3.2.3 Revision History (Counting Process Format)
The preceding steps produced a distinct dataset in the
Counting Process Format for each project in the KOffice
dataset. Table 2 lists each project in the KOffice dataset
and contains a brief description of the functionality,
size (total number of classes and lines of code) and
activity (total number of revisions and defect-fixes) of
each project. Each of these datasets has been formatted
in the Counting Process Format described above.

3.2.4 Model Building
3.2.4.1 Model Calibration

When building a Cox model, consideration must be
given to ensure that the Cox Proportional Hazards as-
sumption (Equation 4) is satisfied with respect to covari-
ates and confounding factors. This can be done using
link functions and stratification.

Link function: Recall that from Equation 4, we expect
to see a linear relationship between log-hazard and
each covariate. A linear relationship between log-hazard
and each covariate indicates that the Cox Proportional
Hazards assumption has been satisfied. However, if this
is not the case, than we must use link functions, as
in Equation 5, to transform (or maintain) the relation-
ship between log-hazard and the covariate to a linear
relationship. Care must be taken to specify the link
function because an incorrectly specified link function
may become a source of nonproportionality [29].

Within the traditional application domains of survival
analysis, medical and biological sciences, these link func-
tions are often well known from a large body of previous
work [29]. However, when the link function is unknown,
we must determine the link function ourselves.

Koru et al. identified their link function by plotting
size against the log relative hazard [29], [35]. Koru et al.
used a fitting function (i.e., restricted cubic splines) to
visualize this relationship. Restricted cubic splines were
used to divide size into multiple ranges that are identi-
fied by knots (four knots placed at quartile size values
are recommended [35]). A cubic polynomial was then fit
to each range. This approach relaxes the assumption that
the relationship between the log relative hazard and size
is linear. Further, cubic splines produce a better fit than
linear splines because cubic splines curve at the knot
points [35].

Figure 2 shows the relationship between the log rel-
ative hazard and size for each of the KOffice projects.
The dashed line indicates the 95% confidence interval.
The log relative hazard is relative to the average class
size (i.e., the log relative hazard for a class with the
average class size is zero). To remove potential outliers,
the smallest and largest ten observations were removed.
This analysis is performed automatically by the rms
package (formerly the Design package), a R package that
was developed by Harrell [35].

Figure 2 clearly shows that the relationship between
the log relative hazard and size is not linear. Therefore,
a link function is required to transform size. Koru et al.
manually examined these figures and concluded that the
general shape of the figures in Figure 2 is logarithmic.
Therefore, Koru et al. used the natural logarithm of size
to build their Cox model.

Stratification: In addition to applying a link function,
Koru et al. also stratified their models based on the
number of previous defects to control for the inherent
“defect-proneness” of the class. The specific stratification
levels were determined empirically by 1) examining the
distribution of the number of defects per class across
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(a) Karbon (b) KChart (c) Kexi

(d) KFilter (e) Kivio (f) KPresenter

(g) Krita (h) KSpread (i) Kugar

(j) KWord

Fig. 2: Identifying the link function for size for each of the KOffice projects.
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TABLE 1: Formatted History of a Hypothetical Class

Class Start End Event Size Note
foo.c 0 5 0 50 foo.c was created at time 0 (Start = 0) with a class size was 50 (Size = 50) and 3 lines were

added to foo.c (Size = 50 + 3 for the next event) 5 minutes after creation (End = 5).
foo.c 5 9 1 53 a defect was fixed in foo.c (Event = 1) 9 minutes (End = 9) after creation and the last event was

at 5 minutes after creation (Start = 5). 3 lines were added to foo.c in the last revision (Size = 50
+ 3 ) and 6 lines were deleted from foo.c in this revision (Size = 53 - 6 for the next event).

foo.c 9 18 0 47 foo.c was modified (Event = 0) 18 minutes (End = 18) after creation and the last event was at
9 minutes after creation (Start = 9). 6 lines were deleted from foo.c in the last revision (Size =
53 - 6) and 51 lines were added to foo.c in this revision (Size = 47 + 51 for the next event).

foo.c 18 48 0 98 foo.c was deleted (Event = 0) 48 minutes (End = 48) after creation and the last event was at 18
minutes after creation (Start = 18). 51 lines were added to foo.c in the last revision (Size = 47 +
51) and 98 lines were deleted from foo.c in this revision (Size = 98 - 98, foo.c no longer exists).

foo.c no longer exists

TABLE 2: Projects in the KOffice Dataset

Project Functionality #Classes #LOC #Revisions #Defect-Fixes
Karbon Vector graphics editor 382 30,749 5,072 1,242
KChart Creating tool 112 22,719 406 98
Kexi Data management tool 250 47,441 613 106
KFilter File format converter 1,131 141,398 5,045 1,142
Kivio Diagramming tool 191 29,869 1,431 377
KPresenter Presentation tool 409 108,299 2,380 608
Krita Graphics painting 1,210 112,422 9,149 2,961
KSpread Spreadsheet tool 587 151,375 5,339 1,789
Kugar Report generation tool 129 15,701 602 112
KWord Word processor 802 83,731 5,953 1,932

each project in the KOffice dataset and 2) testing which
stratification levels satisfy the Cox Proportional Hazards
assumption. Each class was assigned to one of the
following states: state 1 (no prior defects), state 2 (1-
5 prior defects), state 3 (6-25 prior defects) and state 4
(more than 25 prior defects). Classes begin in an initial
state (state 1) and are limited to making certain state
transitions (state 1 to state 2, state 2 to state 3 and state
3 to state 4) as they experience defects. Classes cannot
skip a state (i.e., defects are measured by the number
of defect-fixing revisions and two defect-fixing revisions
cannot simultaneously occur) or return to a previous
state (i.e., the number of prior defects cannot decrease).

3.2.4.2 Model Fitting
Once link functions have been identified and stratifica-

tion levels have been specified, a Cox model can be built
from the data collected in Section 3.2.2. Koru et al. built
one Cox model for each KOffice project. These models
are summarized in Table 3. Table 3 shows the coefficient
estimate (β̂), the robust standard error estimate of β̂
and the nonproportionality test statistic (explained in the
next Section).

The default standard error estimate for β̂ in a fit-
ted Cox model assumes that each observation is in-
dependent. However, this is not the case in recurrent
event analysis because subjects can have multiple events.
Therefore, Koru et al. used a robust standard error estimate
which systematically recomputes the covariates leaving
out one or more subjects (which may have multiple
events) at a time from the sample set. In this manner,
the bias and variance in the coefficient is estimated.

TABLE 3: Cox Models for the KOffice Projects

Project β̂ Robust Nonproportionality
Standard Error Test Statistic

(p-value)
Karbon 0.592 0.069 0.817
KChart 0.656 0.109 0.339
Kexi 0.843 0.100 0.691
KFilter 0.583 0.040 0.770
Kivio 0.786 0.075 0.780
KPresenter 0.590 0.051 0.402
Krita 0.414 0.026 0.061
KSpread 0.474 0.033 0.738
Kugar 0.555 0.091 0.492
KWord 0.740 0.037 0.285

The β̂s may be interpreted as follows: one unit increase
in the natural logarithm of class size multiplies the rate
of experiencing defects (i.e., the hazard) by eβ̂ .

From Table 3, Koru et al. found that 0 < β̂ < 1.
This indicates that the relationship between class size
and defect-proneness is consistent across the ten KOffice
project. The implications will be further explored in
Section 3.3. However, prior to interpreting the results of
their models, Koru et al. validated the Cox Proportional
Hazards assumption and investigated overly influential
observations.
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3.2.4.3 Model Verification
Valid Cox models will satisfy the Cox Proportional

Hazards assumption and will not be overly influenced
by any single observation. Koru et al. verified these two
conditions before interpreting the results of their models.

The Cox Proportional Hazards assumption states that
the log-relative hazard between two subjects is linearly
dependent on the difference between their covariate val-
ues and holds for all time (Equation 4). This assumption
can be evaluated using several graphical and/or numeric
techniques. Using Equation 6, the nonproportionality test
statistic tests the null hypothesis that Ho : Θ̂ = 0, given
some time dependent function g(t). If the hypothesis that
Θ̂ is zero cannot be rejected, then β̂ has a statistically
significant interaction with time (a violation of the Pro-
portional Hazard assumption).

β̂(t) = β̂ + Θ̂ × g(t) (6)

Although not specifically stated by Koru et al., the re-
sults in Table 3 are consistent with the identity transform
(i.e., g(t) = t). The identity transform, combined with
Equation 6, tests whether β̂ has a statistically significant
linear interaction with time.

From Table 3, Koru et al. found that the nonpropor-
tionality test statistic indicates that β̂ does not have a
statistically significant interaction with time (i.e., p ≥
0.05). Therefore, the Cox Proportional Hazards assump-
tion was satisfied.

Overly influential observations may skew the coeffi-
cients of the final model and affect the validity of the Cox
Proportional Hazards assumption. Koru et al. analyze
the impact that each observation has on the model using
dfbeta residuals. The dfbeta residual calculates the influ-
ence of each observation by fitting a Cox model to the
dataset with and without the observation. The difference
between the β̂s of both models (i.e., one model with
the observation and one model without the observation)
is the influence of that observation. Figure 3 shows the
dfbeta residuals for each of the KOffice projects.

From Figure 3, Koru et al. identified outliers from each
KOffice project. However, upon further analysis of each
outlier, Koru et al. chose not to remove any observations
as they were found to be valid observations.

3.3 Results
With a set of models, Koru et al. defined the Relative
Defect-Proneness (RDP) of two classes, i and j, as the
log-relative hazard between class i and j. This is based
solely on the differences between class i and j and
regardless of any baseline defect-proneness. In this case
study, the difference between class i and j is based solely
on the difference in class size (i.e., lines of code).

The relationship between size and defect-proneness
was derived from the Cox model. From Equation 2, the
risk that class i experiences a defect relative to the risk
that class j experiences a defect depends on their size
(i.e., Xi(t) and Xj(t) respectively) and a link function f .

Koru et al. found that the link function was logarithmic,
therefore Equation 2 simplifies to:

λi(t)

λj(t)
= exp((f(Xi(t)) − f(Xj(t))) × β) (7)

= exp((log(Xi(t)) − log(Xj(t))) × β) (8)
= exp(log(Xi(t)/Xj(t)) × β) (9)
= (Xi(t)/Xj(t))

β (10)

From Equation 10, the relationship between β̂ and 1)
the number of defects and 2) defect density (i.e., the
number of defects divided by class size) can be derived,
as shown in Table 4. The relationships in Table 4 are
well supported if β̂ and the 95% confidence interval fall
within one of these interpretation ranges.

TABLE 4: Interpretation of the β̂ Coefficient.

Range Relationship Between Size and:
Number Density

β̂(t) < 0 Decreases Decreases
β̂(t) = 0 No Impact No Impact
0 < β̂(t) < 1 Increases Decreases
β̂(t) = 1 Increases No Impact
β̂(t) > 1 Increases Increases

Figure 4 shows the β̂s and the 95% confidence inter-
vals for each of the KOffice projects. From this, Koru
et al. found that, with one exception, β̂ and the 95%
confidence interval lie between zero and one. Therefore,
their hypothesis that smaller classes are proportionally
more defect-prone is well supported. Specifically, there is
a power-law relationship between class size and defect-
proneness where defect-proneness increases at a slower
rate compared to class size.

3.4 Lessons Learned
Table 5 shows the implementation details that were
missing from the original paper by Koru et al., but
required for our replication study. A description of these
implementation details is available in the documentation
of the rms and survival packages [32], [33]. In addition
to these details, we also provide the scripts that we used
to replicate the work in Koru et al. in the appendix.

In addition to the missing parameters listed in Table 5,
several other implementation details were missing. For
example, two distinct models were fit to each dataset: 1)
one model was used to calculate the nonproportionality
test statistic and 2) one model was used to calculate the
robust standard error estimate.

Despite the difficulty in reverse engineering the imple-
mentation details in the original study by Koru et al., the
results of this research question indicate that we were
successful in recovering these details. In addition, we
were able to determine whether the implementation de-
tails chosen be Koru et al. were appropriate. This insight
will be leveraged in our next two research questions.
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(a) Karbon (b) KChart (c) Kexi

(d) KFilter (e) Kivio (f) KPresenter

(g) Krita (h) KSpread (i) Kugar

(j) KWord

Fig. 3: Identifying overly influential observations using dfbeta residuals for each of the KOffice projects.



11

TABLE 5: Missing Implementation Details.

Function Missing Parameter Possible Values Actual Value
coxph ties efron, breslow or exact efron

cluster either null or id id
cph method efron, breslow, exact, model.frame or model.matrix efron
cox.zph transform km, rank or identity identity

Fig. 4: β̂ and the 95% Confidence Interval.

RQ2: CAN WE GENERALIZE THE APPROACH
OF KORU ET AL. TO ADDITIONAL SOFTWARE
PROJECTS?

3.5 Motivation

Our second research question addresses the general-
izability of the methodology and results of Koru et
al. We used the methodology and data formulation of
Koru et al. (i.e., defect fix and continuous time scale),
described in Section 3, to fit a Cox model to Chrome,
Eclipse, Firefox and Netbeans. We then compare the
results derived from these models with the results of
Koru et al. (presented in Section 3).

Koru et al. have studied Eclipse in their previous work
[9]. They found that smaller classes are proportionally
more defect-prone in Eclipse (i.e., the same relationship
they found in the KOffice dataset). However, Koru et al.
failed to properly verify the Cox Proportionals Hazards
assumption: the authors use the nonproportionality test
statistic, a numerical technique, that is widely consid-
ered to be insufficient [29], [36], [37]. Therefore, we use
scaled Schoenfeld residuals, a graphical technique, that
is widely used to verify the Cox Proportional Hazards
assumption [29], [36], [37].

3.6 Approach

3.6.1 Data Source

The dataset used in our replication study consists of four
large-scale, widely-used software projects (i.e., Chrome,
Eclipse, Firefox and Netbeans). The revision history of
each source code file for each of the four projects was
collected. The data was collected between the date of
the initial commit to each source code repository and
June 24, 2010. A distinct dataset was created for each of
the four projects.

3.6.2 Data Extraction

Extract Revision History: We extracted the revision history
for each file in the project. The revision history of a
particular file contains the list of revisions, including
the date and time of the revision and the commit log
message. We also measured the size (i.e., lines of code)
of the file after the revision was made.

Identify Defect Fixes: We identified defect fixes by
searching for the keywords “bug,” “x,” “defect” and
“patch” in the commit log messages of each revision. In
addition to one or more of these keywords, we searched
for a unique numeric identifier (i.e., a defect identifier).
We then cross-referenced the defect identifier with the
issue tracking system (e.g., Bugzilla) to confirm that the
revision was a defect fix.

Transformation to Counting Process Format: The revision
history extracted in the proceeding sub-steps was for-
matted this data in the same manner as Koru et al.,
outlined in Section 3.2.2.

3.6.3 Revision History (Counting Process Format)

Table 6 presents an overview of the four projects in our
dataset. We calculate the total number of 1) source code
files, 2) lines of code, 3) revisions and 4) defect fixes for
each project. Similar information for the KOffice projects
was presented in Table 2 in Section 3.2.3. Table 6 also
presents the date of the first revision for each project.

TABLE 6: Descriptive Statistics for Chrome, Eclipse, Fire-
fox and Netbeans

Project #Files #LOC #Revisions #Defect- First
Fixes Revision

Chrome 8,034 2,277,598 114,019 629 7/26/2008
Eclipse 9,318 1,977,825 227,802 33,561 5/2/2001
Firefox 11,697 3,478,150 270,351 12,166 27/3/1998
Netbeans 9,760 1,847,668 119,725 23,577 5/1/1999
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(a) Chrome (b) Eclipse

(c) Firefox (d) Netbeans

Fig. 5: Plots of the log-relative hazard against size to identify the link function. The dashed line indicates the 95%
confidence interval. The confidence intervals diverge at the larger end of the scale where there are fewer files.

3.6.4 Model Building
3.6.4.1 Model Calibration

Link function: First, we identify the link function
using the same technique as Koru et al. presented in
Section 3.2.4. Figure 5 shows the relationship between
the log relative hazard and size for Chrome, Eclipse,
Firefox and Netbeans.

Figure 5 clearly shows that the relationship between
the log relative hazard and size is not linear. Therefore,
a link function is required. Similar to Koru et al., our
link function is the natural logarithm. To determine
whether the link function is sufficient to satisfy the Cox
Proportional Hazards assumption (Equation 4), we plot
the relationship between the log relative hazard and the
natural logarithm of size for Chrome, Eclipse, Firefox
and Netbeans. Figure 6 shows this relationship.

We expect to see a linear relationship between the
log relative hazard and the natural logarithm of size if
the Cox Proportional Hazards assumption is satisfied
over the entire size range. However, from Figure 6,
we find that this relationship is not linear. Therefore, a
link function alone is not sufficient to satisfy the Cox
Proportional Hazards assumption and the approach of
Koru et al. is not sufficient to build valid Cox models
for Chrome, Eclipse, Firefox and Netbeans. However, the
reason for this is unclear.

One potential reason may be that the link function
used by Koru et al. (i.e., the natural logarithm) is an
approximation of the actual link function. This approx-
imation may break-down at larger module sizes and
this break-down is exasperated by the presence of much
larger modules. Although we can only validate this
reason by determining the actual link function, which
requires exhaustive evaluation of all possible link func-
tions, we should expect much larger modules in Chrome,
Eclipse, Firefox and Netbeans if this break-down occurs.
Table 7 shows the minimum, median and maximum
module (i.e., classes for the KOffice projects and files
for Chrome, Eclipse, Firefox and Netbeans) sizes for the
projects in our replication study.

From Table 7, we find that the maximum module size
in Chrome (73,480), Eclipse (14,450) and Firefox (39,000)
is more than twice as large as the maximum module size
in any of the KOffice projects.

Another potential reason that a link function alone
is not sufficient to satisfy the Cox Proportional Haz-
ards assumption and the approach of Koru et al. was
not sufficient to build valid Cox models for Chrome,
Eclipse, Firefox and Netbeans may be that the size-
defect relationship is influenced by the development
community. Therefore, the link function may also differ
between projects because the development community
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(a) Chrome (b) Eclipse

(c) Firefox (d) Netbeans

Fig. 6: Plots of the log-relative hazard against the natural logarithm of size to verify the link function. The dashed
line indicates the 95% confidence interval. The confidence intervals tend to diverge at the smaller and larger ends
of the scale where there are fewer files.

TABLE 7: Module size statistics for the KOffice Projects,
Chrome, Eclipse, Firefox and Netbeans

Project Minimum Median Maximum
Karbon 4 146 1,280
KChart 7 219.5 6,686
Kexi 4 175 2,858
KFilter 2 201 3,377
Kivio 5 318 1,984
KPresenter 9 457 6,511
Krita 2 126 4,270
KSpread 1 513 6,312
Kugar 5 102 844
KWord 3 399 6,591
Chrome 1 281 73,480
Eclipse 1 279 14,450
Firefox 1 1,341 39,000
Netbeans 1 422 6,462

differs from project to project.
Regardless of the underlying cause, changes to the

approach of Koru et al. are required to satisfy the Cox
Proportional Hazards assumption and build a valid Cox
model. One such change is partitioning. Instead of fitting
a single Cox model over the entire size range, we fit
multiple models by partitioning size into subsets where

the log-relative hazard is piecewise linear. Hence, par-
titioning produces multiple models for a single project,
where each model explains the size-defect relationship
in a subset of the files (i.e., files with a specific file size).
Such an approach to modelling (i.e., building models
on subsets of the files) is becoming more common in
empirical software engineering [38].

Figure 7a shows an example of a non-linear curve and
Figure 7b show how that curve can be partitioned so that
we have two linear subsets. From Figure 7b, we see that
partitioning the curve at 4.0 produces two linear sections.

Each partition must contain enough subjects (e.g.,
files) and events (e.g., defect fixes) to fit a Cox model
because each partition acts as an independent dataset.
In a stratified Cox model, each partition must contain
between 5 and 7 events per stratum [39].

Partitioning size has many advantages over other
techniques (e.g., complex link functions) for dealing with
non-proportionality. First, we can easily interpret the
resulting models, whereas interpretation can become dif-
ficult when complicated link functions are used. Second,
we can specifically test whether the relationship between
lines of code and defect-proneness is constant over the
entire range of lines of code.
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(a) Curve (b) Partitioned Curve

Fig. 7: Partitioning a Non-Linear Curve.

Stratification: Similar to Koru et al., we stratify our
models based on the number of previous defects to con-
trol for the inherent “defect-proneness” of the file. The
specific stratification levels were determined empirically
by 1) examining the distribution of the number of defects
per file across Chrome, Eclipse, Firefox and Netbeans
and 2) testing which stratification levels satisfy the Cox
Proportional Hazards assumption for all Cox models.
Table 8 shows the resulting stratification levels for each
project. Although the specific stratification levels differ
between projects, they do not hamper our interpretation
of the resulting Cox models.

TABLE 8: Stratification Levels for Chrome, Eclipse, Fire-
fox and Netbeans

Project List of Stratification Levels
Chrome 0, 1-5, 6+
Eclipse 0, 1, 2, 3-4, 5-6, 7-9, 10-15, 16-37, 38+
Firefox 0, 1, 2, 3-4, 5-6, 7-9, 10-17, 18+
Netbeans 0, 1, 2, 3, 4-5, 6-8, 9-14, 15-30, 30+

3.6.4.2 Model Fitting
Once we have identified the link function, partition

points and stratification levels, we build one or more
Cox models (based on the number of partition points)
for Chrome, Eclipse, Firefox and Netbeans. These models
are summarized in Table 9. Table 9 presents the partition
points (i.e., the minimum and maximum file size in
the partition), the coefficient estimate (β̂), the robust
standard error estimate of β̂ and the nonproportionality
test statistic for each model.

From Table 9, we find that anywhere between two
and four models are needed to explain the size-defect
relationship in any one project.

3.6.4.3 Model Verification
Valid Cox models will satisfy the Cox Proportional

Hazards assumption and will not be overly influenced
by any single observation. We verify these two condi-
tions before interpreting the results of their models.

The Cox Proportional Hazards assumption states that
the log-relative hazard between two subjects is linearly
dependent on the difference between their covariate
values and holds for all time. Significant departures from
the Cox Proportional Hazards assumption can invalidate
a Cox model and lead to incorrect conclusions. We
assess the Cox Proportional Hazards assumption using
numerical and graphical techniques.

The numerical technique tests whether size has a
statistically significant interaction with time. We use the
same technique as Koru et al. to test whether β̂ has a sta-
tistically significant interaction with time. However, we
use a different transform (i.e., the Kaplan-Meier trans-
form) because the Kaplan-Meier transform is far less
influenced by outliers than the identity transform [40]
that Koru et al. used in their original study [8]. Despite
the usefulness of the nonproportionality test statistic,
the numerical technique by itself is not adequate alone,
because a violation of the Cox Proportional Hazards
assumption does not necessarily invalidate the model
[29], [36], [37]. First, while the interaction of time with
a particular covariate may be statistically significant, the
effect of this nonproportionality on the model may in
fact be small. Second, the nonproportionality may have
been introduced by a small number of overly influential
subjects. To determine if either of these situation is the
reason of the nonproportionality, we must also use a
graphical technique.

The graphical technique requires plotting the scaled
Schoenfeld residuals. The Cox Proportional Hazards as-
sumption is supported by a random pattern of residuals
against time. From Table 9, we find that, for all mod-
els, the nonproportional test statistic does not have a
statistically significant interaction with time (i.e., p ≥
0.05). Figure 8 shows the scaled Schoenfeld residuals
for Eclipse (similar results were found for Chrome, Fire-
fox and Netbeans). We find that the Cox Proportional
Hazards assumption is supported, because the residuals
show a random pattern against time.
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TABLE 9: Cox Models for Chrome, Eclipse, Firefox and Netbeans

Project min(size) max(size) β̂ Robust Nonproportionality Interpretation
Standard Error Test Statistic (Does Defect Density

(p-value) Increase or Decrease with Size?)
Chrome 1 90 1.17 0.232 0.863 Increases
Chrome 90 290 0.329 0.131 0.598 Decrease
Chrome 290 1525 0.157 0.0958 0.581 Decrease
Chrome 1525 73479 -0.185 0.224 0.927 Decrease
Eclipse 1 52 1.08 0.114 0.65 Increases
Eclipse 52 14448 0.401 0.0089 0.0677 Decrease
Firefox 1 55 2.5 1.26 0.934 Increases
Firefox 55 290 0.216 0.0322 0.167 Decrease
Firefox 290 38998 0.151 0.0154 0.11 Decrease
Netbeans 1 92 0.445 0.0723 0.126 Decrease
Netbeans 92 718 0.288 0.0168 0.054 Decrease
Netbeans 718 6463 0.291 0.0805 0.752 Decrease

Overly influential subjects (files) may skew the coeffi-
cients of the final model and affect the validity of the Cox
Proportional Hazards assumption. We mark these overly
influential subjects for removal in the next iteration of
model fitting.

We use dfbetas residuals to identify and remove overly
influential files. Overly influential files will have dfbetas
values greater than twice the inverse of the square root
of the number of files [41], [42]. Overly influential files
are removed from the dataset and the model is refit
without these files. This is a similar technique that was
used by Koru et al., however, we assess overly influential
files, as opposed to overly influential revisions. We also
remove all outliers, as opposed to manually determining
whether a file is an outlier because this approach is not
biased by human interpretation.

Figure 9 shows the dfbetas residuals for Eclipse. Data
points above the upper dashed line or below the lower
dashed line represent files that are considered outliers
[41], [42].

3.7 Results

Finally, we interpret the size-defect relationship. By
choosing the same link function (i.e., the natural log-
arithm) as Koru et al., we can make the same inter-
pretation regarding the size-defect relationship captured
by a Cox model. The relationship between β̂ and 1)
the number of defects and 2) defect density is shown
in Table 4 in Section 3.3. When multiple partitions are
present, we can make the same interpretation regarding
the size-defect relationship for each partition.

From Table 9, we find that the relationship between
size and defects in the four projects is not consistent.
In three of the four projects we find that defect density
increases in smaller files, peaks in the largest small-
sized files/smallest medium-sized files, then decreases in
medium and larger files. This shows that defect density
has an inverted “U” shaped pattern (i.e., medium-sized
files have a higher defect density than small or large
files). However, this conclusion is not well supported
because β̂ and the 95% confidence interval overlap with

(a) Small Partition (1-52LOC)

(b) Large Partition (52-14448LOC)

Fig. 8: Scaled Schoenfeld Residuals for Eclipse. The
values in parenthesis indicate the range in the lines of
code for each partition (e.g., the small partition includes
files between 1 and 52 lines of code).
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(a) Small Partition (1-52LOC)

(b) Large Partition (52-14448LOC)

Fig. 9: Dfbetas Residuals for Eclipse. The values in paren-
thesis indicate the range in the lines of code for each
partition (e.g., the small partition includes files between
1 and 52 lines of code)

two of the interpretation ranges from Table 4 (i.e, 0 <
β̂ < 1 and β̂ > 1). For the fourth project, Netbeans,
the size-defect relationship indicates that defect density
continually decreases as file size increases. This is the
same result that was found by Koru et al. in the KOffice
project and in our first research question.

In general, our results do not indicate a well sup-
ported, consistent relationship between size and defects.

We find that the conclusions of Koru et al. are not
generalizable.

RQ3: WHAT IS THE IMPACT OF USING A DIF-
FERENT DATA FORMULATION?
3.8 Motivation
Koru et al. formulated the modelling of defects in source
code modules as a time-to-event problem and used
survival analysis to study the size-defect relationship.
They found that smaller modules are proportionally
more defect-prone (i.e., the number of defects per line of
code is higher in smaller modules). Koru et al. demon-
strated the power of survival analysis in modelling
defects, however care should be taken when transferring
approaches from other fields to software engineering.
Major differences exist between the traditional domains
of survival analysis and defect modelling.

First, Koru et al. modelled defect fix data, as opposed
to defect introduction data. However, to prioritize soft-
ware quality improvement efforts, software practition-
ers must model when a defect will be introduced, as
opposed to when a defect will be fixed because defect
introductions are the true event of interest. In traditional
defect models, defect fix data is a good approximation
for defect introduction data because all time information
is collapsed when building the model for a particular
point in time, therefore, the time difference between
defect introduction and fix becomes almost irrelevant.
However, survival analysis explicitly takes into account
time information, making it likely that the approxima-
tion of defect introduction by defect fix no longer holds.

Second, Koru et al. modelled events along a continu-
ous time scale (i.e., a defect can be fixed or introduced
at any time). However, defects can only be fixed or
introduced along a discrete time scale (i.e., when a
revision occurs). Software practitioners can modify the
source code at any point in time, however, we can
only observe these changes when revisions are made
to the source code repository. Therefore, defect fixes or
introductions, occur along a discrete time scale. Survival
analysis experts recommend that a discrete time scale
be used when observations can only be made at specific
points in time [10], [11].

Therefore, we formulate a new dataset using a discrete
time-scale that uses defect introductions as the event of
interest.

3.9 Approach
3.9.1 Data Source
The dataset used in our replication study consists of the
same four software projects (i.e., Chrome, Eclipse, Firefox
and Netbeans) as our previous research question.

3.9.2 Data Extraction
Extract Revision History: We extracted the revision his-
tory for each file in the project. The revision history of
a particular file contains the list of revisions, including
the date and time of the revision and the commit log
message. We also measured the size (i.e., lines of code)
of the file after the revision was made.
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Identify Defect Fixes: We used the SZZ algorithm
presented in [43] by Śliwerski et al. to determine which
revisions are defect introducing.

The SZZ algorithm is currently the state-of-the-art al-
gorithm for automatically identifying defect introducing
revisions. First, SZZ identifies defect fixing revisions by
searching for the keywords “bug,” “x,” “defect” and
“patch” in the commit log messages of each revision
and matching defect identifiers in the revisions’ commit
messages to defect reports in the issue tracking system
that are marked as FIXED. Second, each modified code
snippet (fixed code) in a fixing revision is mapped back
to the most recent revision in which it was modified.
Finally, the defect-introducing revisions are identified
based on how much fixed code maps back to these
revisions. Therefore, we are able to identify each revision
as 1) defect introducing, 2) defect fixing or 3) neither.

Transformation to Counting Process Format: The revision
history extracted in the proceeding sub-steps records the
following information for each revision of each file: 1) the
revision number, 2) the size of the file after the revision
was made and 3) a binary indicator for whether this
revision is a defect introduction. We analyzed the history
of each file in the source code repository and created one
observation for each revision of each file. Each individual
observation was composed of the following fields:

1) ID – A unique identifier for each file in the study.
2) Start – The End time of the previous revision plus

one. The Start time of the first revision is set to zero.
A discrete time scale normalizes the time between
two revisions. Regardless of the number of minutes
between two revisions, we always measure one
unit of time.

3) End – The Start time plus one.
4) Event – An indicator (one or zero) of whether this

revision was a defect introducing revision.
5) State – The current stratification level (state) of

the file. Table 11 shows the resulting stratification
levels for each project.

6) Size – The covariate of interest, the number of lines
of code in the file at the Start time (i.e, the file size
after the revision was made).

3.9.3 Revision History (Counting Process Format)
Table 10 presents an overview of Chrome, Eclipse, Fire-
fox and Netbeans. Similar information for the KOffice
projects was presented in Table 2 in Section 3.2.3.

TABLE 10: Descriptive Statistics for Chrome, Eclipse,
Firefox and Netbeans

Project #Files #LOC #Revisions #Defect-
Introductions

Chrome 8,034 2,277,598 114,019 467
Eclipse 9,318 1,977,825 227,802 21,508
Firefox 11,697 3,478,150 270,351 9,164
Netbeans 9,760 1,847,668 119,725 16,267

(a) Chrome

(b) Eclipse

(c) Firefox

(d) Netbeans

Fig. 10: Plots of the log-relative hazard against size to
identify the link function. The dashed line indicates
the 95% confidence interval. The confidence intervals
diverge at the larger end of the scale where there are
fewer files.
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3.9.4 Model Building

3.9.4.1 Model Calibration
Link function: Similar to our previous research ques-

tion, we identify the link function using the technique
presented in Section 3.2.4. Figure 10 shows the rela-
tionship between the log relative hazard and size for
Chrome, Eclipse, Firefox and Netbeans.

Similar to our previous research question, Figure 10
clearly shows that the relationship between the log rela-
tive hazard and size is not linear. Again, a link function
is required and our link function is the natural logarithm.
To determine whether the link function alone is sufficient
to satisfy the Cox Proportional Hazards assumption
(Equation 4), we plot the relationship between the log
relative hazard and the natural logarithm of size for
Chrome, Eclipse, Firefox and Netbeans. Figure 11 shows
the relationship between the log relative hazard and the
natural logarithm of size for Chrome, Eclipse, Firefox
and Netbeans.

Similar to our previous research question, Figure 11
shows that the relationship between the log relative
hazard and the natural logarithm of size is not linear.
Therefore, a link function alone is not sufficient to satisfy
the Cox Proportional Hazards assumption and, again,
we must also partition size. We used the technique
presented in Section 3.6.4 to identify the partition points.
The solid lines in Figure 11 indicate these partitions
points.

From Figure 11, we find that each project has three
partitions. These partitions can broadly be classified into
small files, medium files and large files. A Cox model
will be fit to each of the three partitions of Chrome,
Eclipse, Firefox and Netbeans (i.e., three Cox models
per project). However, prior to fitting the Cox model
and interpreting the size-defect relationship within each
partition, we must ensure that the models we have fit
are valid models.

Stratification: Similar to Koru et al., we stratify our
models based on the number of previous defects to
control for the inherent “defect-proneness” of the file.
Table 11 shows the resulting stratification levels for
Chrome, Eclipse, Firefox and Netbeans.

TABLE 11: Stratification Levels for Chrome, Eclipse,
Firefox and Netbeans

Project List of Stratification Levels
Chrome 0, 1-5, 6+
Eclipse 0, 1, 2, 3-4, 5-6, 7-9, 10-15, 16-37, 38+
Firefox 0, 1, 2, 3-4, 5-6, 7-9, 10-17, 18+
Netbeans 0, 1, 2, 3, 4-5, 6-8, 9-14, 15-30, 30+

(a) Chrome

(b) Eclipse

(c) Firefox

(d) Netbeans

Fig. 11: Plots of the log-relative hazard against the nat-
ural logarithm of size to verify the link function. The
dashed line indicates the 95% confidence interval. The
confidence intervals tend to diverge at the smaller and
larger ends of the scale where there are fewer files.
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TABLE 12: Cox Models for Chrome, Eclipse, Firefox and Netbeans

Project min(size) max(size) β̂ Robust Nonproportionality Interpretation
Standard Error Test Statistic (Does Defect Density

(p-value) Increase or Decrease with Size?)
Chrome 1 116 1.66 0.145 0.968 Increases
Chrome 116 1097 0.371 0.0865 0.917 Decreases
Chrome 1097 51386 -1.33 0.442 0.433 Decreases
Eclipse 1 70 1.62 0.0891 0.597 Increases
Eclipse 70 148 0.388 0.0816 0.866 Decreases
Eclipse 148 14448 0.0878 0.0165 0.558 Decreases
Firefox 1 89 1.82 0.201 0.921 Increases
Firefox 89 403 0.114 0.0503 0.879 Decreases
Firefox 403 38998 -0.0141 0.0294 0.477 Decreases
Netbeans 1 35 1.74 0.686 0.708 Increases
Netbeans 35 245 0.614 0.035 0.108 Decreases
Netbeans 245 6463 0.0675 0.0218 0.260 Decreases

3.9.4.2 Model Fitting
Once we have identified the link function, partition

points and stratification levels, we build one or more
Cox models (based on the number of partition points)
for each of the projects in our dataset. These models are
summarized in Table 12. Table 12 presents the partition
points (i.e., the minimum and maximum file size in
the partition), the coefficient estimate (β̂), the robust
standard error estimate of β̂ and the nonproportionality
test statistic.

From Table 12, we find that three models are used to
explain the size-defect relationship in any one project.
These partitions broadly correspond to small files,
medium files and large files.

3.9.4.3 Model Verification
Valid Cox models will satisfy the Cox Proportional

Hazards assumption and will not be overly influenced
by any single observation. We verify these two condi-
tions before interpreting the results of our models.

We assess the Cox Proportional Hazards assumption
using the nonproportionality test statistic and the scaled
Schoenfeld residuals. From Table 12, we find that, for
all models, the nonproportionality test statistic indicates
that β̂ does not have a statistically significant interaction
with time (i.e., p ≥ 0.05). This is evidence that the Cox
Proportional Hazards assumption is satisfied.

However, Koru et al. failed to properly verify the Cox
Proportionals Hazards assumption. Koru et al. used the
nonproportionality test statistic, a numerical technique,
that is widely considered to be insufficient [29], [36],
[37]. Therefore, we also use scaled Schoenfeld residuals,
a graphical technique, that is widely used to verify the
Cox Proportional Hazards assumption [29], [36], [37].

To confirm that the Cox Proportional Hazards assump-
tion is satisfied, we plot the scaled Schoenfeld residuals.
Figure 12 shows the scaled Schoenfeld residuals for
Firefox (similar results were found for Chrome, Firefox
and Netbeans). From Figure 12, we find that the Cox
Proportional Hazards assumption is supported, because
the residuals show a random pattern against time.

We identify overly influential subjects (files) for re-
moval in the next iteration of model fitting using dfbetas
residuals. Figure 13 shows the dfbetas residuals for
Firefox (similar results were found for Chrome, Eclipse
and Netbeans). Points above the upper dashed line or
below the lower line represent files that are considered
outliers [41], [42].

3.10 Results
Finally, we interpret the size-defect relationship. From
Table 12, we find that defect density increases in smaller
files then decreases in medium and larger files. This
conclusion is well supported because β̂ and the 95% con-
fidence intervals of the small partitions of each project
are greater than one, while β̂ and the 95% confidence
intervals of the medium and large partitions of each
project are less than one. Therefore, defect density has
an inverted “U” shaped pattern (i.e., medium-sized files
have a higher defect density than small or large files).

We find that defect density has an inverted “U”
shaped pattern (i.e., medium-sized files have a
higher defect density than small or large files).

4 DISCUSSION
The work of Koru et al. has been instrumental in the
software engineering research community’s recent un-
derstanding of the size-defect relationship [7]–[9]. There-
fore, in this paper, we have replicated the “theory of
relative defect proneness” [8]. We have also re-evaluated
the “theory of relative defect proneness” by 1) reformu-
lating the problem to better reflect the problem of defect
modelling and by 2) properly validating the underlying
assumptions of the Cox Proportional Hazards model.
Table 13 provides a summary of our three research
questions and briefly describes our main findings. In
particular, Table 13 outlines the differences between our
three research questions and the original study by Koru
et al. (our first research question is an exact replication
of the original study).
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(a) Small Partition (1-89LOC)

(b) Medium Partition (89-403LOC)

(c) Large Partition (403-38998LOC)

Fig. 12: Scaled Schoenfeld Residuals for Firefox.

(a) Small Partition (1-89LOC)

(b) Medium Partition (89-403LOC)

(c) Large Partition (403-38998LOC)

Fig. 13: Dfbetas Residuals for Firefox.
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TABLE 13: Summary of Our Research Questions

RQ1 RQ2 RQ3
Case Study
Subjects • KOffice projects • Chrome

• Eclipse
• Firefox
• Netbeans

• Chrome
• Eclipse
• Firefox
• Netbeans

Data
Formulation • Defect fixes

• Continuous time-scale
• Defect fixes
• Continuous time-scale

• Defect introductions
• Discrete time-scale

Model
Calibration • Link function (natural logarithm)

• Stratification by the number of
previous defects

• Link function (natural logarithm)
• Partitioning by file size
• Stratification by the number of

previous defects

• Link function (natural logarithm)
• Partitioning by file size
• Stratification by the number of

previous defects

Model
Verification • Nonproportionality test statistic

(identify transform)
• Dfbetas residuals

• Nonproportionality test statistic
(Kaplan-Meier transform)

• Scaled Schoenfeld residuals
• Dfbetas residuals

• Nonproportionality test statistic
(Kaplan-Meier transform)

• Scaled Schoenfeld residuals
• Dfbetas residuals

Results
• Defect density is highest in

smaller files and decreases with
file size

• The size-defect relationship was
not consistent across Chrome,
Eclipse, Firefox and Netbeans

• Defect density has an inverted
“U” shaped pattern (i.e., medium-
sized files have a higher defect
density than small or large files)
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5 THREATS TO VALIDITY

5.1 Threats to Construct Validity
Threats to construct validity describe concerns regarding
the measurement of our metrics.

The number of defects in each source code file was
measured by identifying the files that were changed in a
defect fixing revision. Although this technique has been
found to be effective [44], [45], it is not without flaws. We
identified defect fixing changes by mining the commit
logs for a set of keywords (i.e., “bug,” “fix,” “defect”
and “patch”). Therefore, we are unable to identify defect
fixing revisions (and therefore defects) if we failed to
find a specific keyword, if the committer misspelled
the keyword or if the committer failed to include any
commit message. We are also unable to determine which
source code files have defects when defect fixing modifi-
cations and non-defect fixing modifications are made in
the same revision. However, such problems are common
when mining software repositories [46].

The data used in our third research questions (i.e.,
Chrome, Eclipse, Mozilla and Netbeans) was extracted
from the source code repository of each project and the
SZZ algorithm was used to identify defect introducing
changes. Although the SZZ algorithm is currently the
best algorithm for automatically identifying defect intro-
ducing changes, it is likely that not all of the defect fixing
changes were mapped to defect introducing changes.

5.2 Threats to Internal Validity
Threats to internal validity describe concerns regarding
alternate explanations for our results.

Our second and third research questions were ad-
dressed using file-level data (i.e., we modelled defects at
the file-level), whereas the original study by Koru et al.
used class-level data [8]. However, from Table 7, we find
that the median class sizes in the KOffice projects and the
median files sizes in Chrome, Eclipse, Firefox and Net-
beans are similar. This is to be expected as most files have
only one class. Therefore, measures of size at the class-
level are comparable to those at the file-level. Further,
Koru et al. have used the same approach to studying the
functional form of the size-defect relationship (i.e., the
approach we replicated in Section 3) with both class-level
and file-level measures of size [47]. The authors found
the same size-defect relationship regardless of whether
class-level or file-level measures of size were used to
build their models. Therefore, we do not believe that
using file-level, as opposed to class-level, measures of
size has impacted our results.

The results of our replication study, as well as the
results of all survival analysis studies, depend upon how
we satisfy the Cox Proportional Hazards assumption
(i.e., the link functions and stratification levels). The nat-
ural logarithm link function simplifies our interpretation
of the β̂ coefficients in our models (i.e., the functional
form of the size-defect relationship), however, that does
not necessarily indicate that it is the best link function.

We stratified our models across the number of previous
defects, however, we may have failed to stratify our
models across all confounding factors. Finally, we man-
ually specified the partition ranges based on the plots of
link functions, however, it is possible that we have not
made the best choice of partition points.

5.3 Threats to External Validity
Threats to external validity describe concerns regarding
the generalizability our results.

The studied projects represent a small subset of the
total number of software projects available. We have also
limited our replication study to open-source projects.
Therefore, our results may not generalize to other
projects, in particular closed-source projects. Although
our replication study included a relatively small num-
ber of projects, we attempted to mitigate this issue by
choosing a diverse set of projects. In particular, we chose
projects from different domains (web browsers and in-
tegrated development environments) with different end
users (software developers and consumers).

6 CONCLUSIONS
Our paper presented a replication study of the work
of Koru et al. In particular, we paid close attention
to the role of event selection (i.e., modelling defect
introductions as opposed to defect fixes) and time scale
specification (i.e., discrete time as opposed to continuous
time scales) in determining the size-defect relationship.
Although survival analysis has shown to be a promising
approach to modelling defects, care should be taken
when formatting defect data for such analysis. Our
second and third research questions, demonstrate how
using different formulations of defect data impact the
results of a Cox model.

Interestingly, our findings show that defect density
has an inverted “U” shaped pattern (i.e., defect density
increases in smaller files, peaks in the largest small-
sized files/smallest medium-sized files, then decreases in
medium and larger files). This is the opposite of the
Goldilocks principle, which states that the medium-sized
files have the lowest defect density [24].

Our findings generally agree with the results of Koru
et al., who found that defect density decreases as module
size increases. Although we found that this relationship
holds in medium and large-sized modules, we found
that defect density increases in small modules as module
size increases, whereas Koru et al. found that defect den-
sity always decreases as file size increases. Our results
arise from interpreting Cox models after rigorously ver-
ifying that they satisfied the Cox Proportional Hazards
assumption.

In the future, we intend to further explore the size-
defect relationship by using finer grained partitions to
pinpoint where defect density peaks. In our current
work, we have found that defect density peaks in
medium-sized files, however, we do not know exactly
where this peak occurs.
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