Noname manuscript No.
(will be inserted by the editor)

Studying the Relationship between Logging
Characteristics and the Code Quality of Platform
Software

Weiyi Shang - Meiyappan Nagappan -
Ahmed E. Hassan

Received: date / Accepted: date

Abstract Platform software plays an important role in speeding up the de-
velopment of large scale applications. Such platforms provide functionalities
and abstraction on which applications can be rapidly developed and easily
deployed. Hadoop and JBoss are examples of popular open source platform
software. Such platform software generate logs to assist operators in monitor-
ing the applications that run on them. These logs capture the doubts, concerns,
and needs of developers and operators of platform software. We believe that
such logs can be used to better understand code quality. However, logging
characteristics and their relation to quality has never been explored. In this
paper, we sought to empirically study this relation through a case study on
four releases of Hadoop and JBoss.

Our findings show that files with logging statements have higher post-
release defect densities than those without logging statements in 7 out of 8
studied releases. Inspired by prior studies on code quality, we defined log-
related product metrics, such as the number of log lines in a file, and log-
related process metrics such as the number of changed log lines. We find that
the correlations between our log-related metrics and post-release defects are
as strong as their correlations with traditional process metrics, such as the
number of pre-release defects, which is known to be one the metrics with the
strongest correlation with post-release defects. We also find that log-related
metrics can complement traditional product and process metrics resulting in
up to 40% improvement in explanatory power of defect proneness.

Our results show that logging characteristics provide strong indicators of
defect-prone source code files. However, we note that removing logs is not the

Weiyi Shang, Meiyappan Nagappan, Ahmed E. Hassan
Software Analysis and Intelligence Lab (SAIL)
Queen’s University

Kingston, Ontario, Canada

Tel.: +1 613-533-6802

E-mail: {swy, mei, ahmed}@Qcs.queensu.ca

2 Weiyi Shang et al.

answer to better code quality. Instead, our results show that it might be the
case that developers often relay their concerns about a piece of code through
logs. Hence, code quality improvement efforts (e.g., testing and inspection)
should focus more on the source code files with large amounts of logs or with
large amounts of log churn.

Keywords Mining software repositories - Software logs - Software quality

1 Introduction

Large platform software provides an infrastructure for a large number of ap-
plications to run over it. Hadoop and JBoss are examples of popular open
source platform software. Such software relies heavily on logs to monitor the
execution of the applications running on top of it. These logs are generated
at run-time by logging statements in the source code. Generating logs during
the execution plays an essential role in field debugging and support activities.
These logs are not only for the convenience of developers and operators, but has
already become part of legal requirements. For example, the Sarbanes-Oxley
Act of 2002 [5] stipulates that the execution of telecommunication and finan-
cial applications must be logged. Although logs are widely used in practice,
and their importance has been well-identified in prior software engineering re-
search [18,53,63], logs have not yet been fully leveraged by empirical software
engineering researchers to study code quality.

We believe that logs capture developers’ concerns and doubts about the
code. Developers tend to embed more logging statements to track the run-time
behaviour of complex and critical points of code. For example, one developer
commented on a bug report (HADOOP-2490 ') of Hadoop, as follows: “...add
some debug output ... so can get more info on why TestScanner2 hangs on
cluster startup.”

Logs also contain rich knowledge from the field. Operators of platform soft-
ware often need to track information that is relevant from an operational point
of view. For example, a user of Hadoop submitted a bug report (HADOOP-
1034 2) complaining about the limited amount of logging. In the description
of the bug report, the user mentions, “Only IOEzception is catched and logged
(in warn). Every Throwable should be logged in error”.

To meet this need for run-time information, developers and operators
record note-worthy system events, including domain-level and implementation-
level events in the logs. In many cases, logs are expected to be leveraged for
fixing issues, with additional analyses and diagnoses. Therefore the inclusion
of more logs in a source code file by a developer could be an indicator that
this particular piece of source code is more critical. Hence, there could be a
direct link between logging characteristics and code quality. However, except
for individual experiences and observations, there are no empirical studies that

I https://issues.apache.org/jira/browse/HADOOP-2490 last checked on May 2013.
2 https://issues.apache.org/jira/browse/HADOOP-1034 last checked on May 2013.

Relationship between Logging and Code Quality 3

attempt to understand the relationship between logs and code quality. In this
paper we seek to study the relationship between the characteristic of logs, such
as log density and log churn, and code quality, especially for large platform
software. We use post-release defects as a measurement of code quality since it
is one of the most important and widely studied aspects of it [56]. In order to
study this relationship, we perform a case study on four releases of Hadoop and
four releases of JBoss. In particular, we aim to answer the following research
questions:

RQ1: Are source code files with logging statements more defect-
prone?

We find that source code files (i.e., files) with logging statements have
higher average post-release defect densities than those without logging state-
ments in 7 out of 8 studied releases. We also find positive correlations between
our log-related metrics and post-release defects. In 7 out of 8 releases, the
largest correlations between log-related metrics and post-release defects are
larger or same as the correlation between post-release defects and pre-release
defects, which prior studies have shown to have the highest correlation to post-
release defects. The correlation between average log churn (number of change
log statements in a commit) and post-release defects is the largest among our
log-related metrics. Such correlation provides support to our intuition about
the developers’ tendency to add more logs in the source code files that they
feel are more defect-prone than others.

RQ2: Can log-related metrics help in explaining post-release de-
fects?

We find that our log-related metrics provide up to 40% improvement over
traditional product and process metrics in explaining post-release defects (i.e.,
explanatory power).

This paper is the first work to establish an empirical link between logs
and defects. We observe positive correlation between logging characteristics
and post-release defects in all studied releases. Therefore, practitioners should
allocate more effort on source code files with more logs or log churn. However,
such positive correlations do not imply that logs are harmful or that they
should be removed. For instance, prior research has shown that files with high
churn are more defect prone [41,42]. Such studies do not imply that we should
not change files. Instead, our study along with prior studies provide indica-
tors to flag high-risk files that should be carefully examined (tested and/or
reviewed) prior to release in order to avoid post-release defects.

The rest of this paper is organized as follows: Section 2 presents a qual-
itative study to motivate this paper. Section 3 presents the background and
related research for this paper. Section 4 presents our new log-related metrics.
Section 5 presents the design and data preparation steps for our case study.
Section 6 presents the results of our case study and details the answers to
our research questions. Section 7 discusses the threats to validity of our study.
Finally, Section 8 concludes the paper.

4 Weiyi Shang et al.

2 Motivating Study

In order to better understand how developers make use of logs, we performed
a qualitative study. We first collected all commits that had logging statement
changes in Hadoop release 0.16.0 to release 0.19.0 and JBoss release 3.0 to re-
lease 4.2. We then selected a 5% random sample (280 commits for Hadoop and
420 commits for JBoss) from all the collected commits with logging statement
changes. Once we extracted the commit messages from the sample commits,
we follow an iterative process similar to the one from Seaman et al. [51] to
identify the reasons that developers change the logging statements in source
code, until we could not find any new reasons. We identified four reasons using
this process and their distributions are reported in Table 1. These four reasons
are described below:

— Field debugging: Developers often use logs to diagnose run-time or field
defects. For example, the commit message of revision 954705 of Hadoop
says: “Region Server should never abort without an informative log mes-
sage”. Looking through the source code, we observed that the Region
Server would abort without any logs. In this revision, the developer added
logging statements to output the reason for aborting. Developers also
change logging statements when they need logs to diagnose pre-release de-
fects. For example, the commit message of revision 636972 of Hadoop says:
“Improve the log message; last night I saw an instance of this message: i.e.
we asked to sleep 3 seconds but we slept <30 seconds”.

— Change of feature: Developers add and change logs when they change
features. For example, in revision 697068 of Hadoop, developer added a
new “KILLED” status for the job status of Hadoop jobs and adapted the
logs for the new job status. Changing logs due the change of feature is the
most common reason for log churn.

— Inaccurate logging level: Developers sometimes change logging levels
because of an inaccurate logging level. For example, developers of JBoss
changed the logging level at revision 29449 with the commit message “Re-
solves (JBAS-1571) Logging of cluster rpc method exceptions at warn level
is incorrect.”. The discussion of the issue report “JBAS-1571” shows that
the developers considered the logged exception as a normal behaviour of
the system and the logging level was changed from “warn” to “trace”.

— Logs that are not required: Developers often think that logs used for
debugging are redundant after the defect is fixed and they remove logs after
using them for debugging. For example, the commit message of revision
612025 of Hadoop says: “Remove chatty debug logging from 2443 patch”.

Our motivating study shows that developers change logs for many reasons,
such as debugging a feature in the field or when they are confident about a fea-
ture. Hence, we believe there is value in empirically studying the relationship
between logging characteristics and code quality.

Relationship between Logging and Code Quality 5

Table 1 Distribution of log churns reasons

Hadoop | JBoss

Field debugging 32% 16%

Change of feature 59% 5%
Inaccurate logging level 0% 7%
Logs that are not required 9% 2%

3 Background and Related Work

We now describe prior research that is related to this paper. We focus on prior
work along two dimensions: 1) log analysis and 2) software defect modeling.

3.1 Log Analysis

In the research area of computer systems, logs are extensively used to detect
system anomalies and performance issues. Xu et al. [62] created features based
on the constant and variable parts of log messages and applied Principal Com-
ponent Analysis (PCA) to detect abnormal behaviours. Tan et al. introduced
SALSA, an approach to automatically analyze logs from distributed comput-
ing platforms for constructing and detecting anomalies in state-machine views
of the execution of a system across machines [60].

Yuan et al. [64] propose a tool named Log Enhancer, which automatically
adds more context to log lines. Recent work by Beschastnikh et al. [8] designed
an automated tool that infers execution models from logs. The models can be
used by developers to verify and diagnose bugs. Jiang et al. design log anal-
ysis techniques to assist in identifying functional anomalies and performance
degradations during load tests [31,32]. Jiang et al. [30] study the characteristic
of customer problem troubleshooting by the use of storage system logs. They
observed that the customer problems with attached logs were resolved sooner
than those without logs.

A workshop named “Managing Large-Scale Systems via the Analysis of
System Logs and the Application of Machine Learning Techniques” 3 is or-
ganized every year. One of the problems that the workshop aims to address
is leveraging the analysis of system logs to assist in managing large software
systems.

The existing research of log analysis demonstrates the wide use of logs in
software development and operation. However, in the aforementioned research,
the researchers look at the logs collected at run time, whereas in our paper
we look at the logging code present in the source code in order to establish
an empirical link between logging characteristics and code quality. Therefore,
the wide usage of logs in software and the lack of sufficient research motivates
us to study the relationship between logging characteristics and code quality
in this paper.

3 http://sosp2011.gsd.inesc-id.pt/workshops/slaml, last checked on December 2012.

6 Weiyi Shang et al.

A recent work by Yuan et al. [63] study the logging characteristics in 4 open
source systems. They quantify the pervasiveness and the benefit of software
logging. They also find that developers modify logs because they often cannot
get the correct log message on the first attempt. Our previous research [54,55]
study the evolution of logs from both static logging statements and log lines
outputted during run time. We find that logs are often modified by developers
without considering the needs of operators. The findings from these previ-
ous studies motivates this work. However, previous studies only empirically
study the characteristics of logs, but do not establish an empirical link with
code quality. This paper focus on empirically studying the relationship of such
logging characteristics and code quality.

3.2 Software defect modeling

Software engineering researchers have built models to understand the rationale
behind software defects. Practitioners use such models to improve their pro-
cesses and to improve the quality of their software systems. Fenton et al. [16]
provide a critical review on software defect prediction models. They recom-
mend holistic models for software defect prediction, using Bayesian belief net-
works. Hall et al. [21] recently conduct a systematic review on defect prediction
models. They find the methodology used to build models seems to be influ-
ential to predictive performance. Prior research typically builds models using
two families of software metrics:

— Product metrics: Product metrics are typically calculated from source
code.

— Traditional product metrics: Early work by Ohlsson and Alberg [45]
build defect models using complexity metrics. Nagappan et al. [42] also
performed case studies to understand the relationship between source
code complexity and software defects. Several studies found complexity
metrics were correlated to software defects although no single set of
metrics can explain defects for all projects [42].

— Code dependency metrics: Prior research investigates the relationship
between defects and code dependencies. Zimmermann and Nagappan [66]
find code complexity metrics have slightly higher correlation to defects
than dependency metrics. However, the dependency metrics perform
better than complexity metrics in predicting defects. Nguyen et al. [43]
replicate the prior study and find that a small subset of dependency
metrics have a large impact on post-release failure, while other depen-
dency metrics have a very limited impact.

— Topic metrics: A few recent studies have tried to establish a link be-
tween topics and defects. Liu et al. [33] proposed to model class co-
hesions by latent topics. They propose a new metric named Maxi-
mal Weighted Entropy (MWE) to measure the conceptual aspects of
class cohesion. Nguyen et al. [44] apply Latent Dirichlet Allocation

Relationship between Logging and Code Quality 7

(LDA) [12] to the subject systems using K=5 topics, and for each source
code entity they multiply the topic memberships by the entity’s LOC.
They provide evidence that topic-related metrics can assist in explain-
ing defects. Instead of focusing on the cohesiveness of topics in a entity,
Chen et al. [14] proposed metrics focus on the defect-prone topics in
a code entity. They find that some topics are much more defect-prone
than others and the more defect-prone topics a code entity has, the
higher are the chances that it has defects.

— Process metrics: Process metrics leverage historical project knowledge.
Examples of process metrics are prior defects and prior commits (code
churn).

— Traditional process metrics: Several studies showed that process met-
rics, such as prior commits and prior defects, better explain software
defects than product metrics (i.e., provide better statistical explana-
tory power) [10,39-41]. Hassan [25] used the complexity of source code
changes to explain defects. He found that the number of prior defects
was a better metric to explain software defects than prior changes. A
recent study by Rahman and Devanbu [50] analyze the applicability
and efficacy of process and product metrics from several different per-
spectives. They find that process metrics are generally more useful than
product metrics.

— Social structure metrics: Studies haven been conducted to investigate
the relationship between social structure and software defects. Wolf et
al. [61] carry out a case study to predict build failures by inter-developer
communication. Pingzger et al. [46] and Meneely et al. [34] use social
network metrics to predict software defects. Bacchelli et al. [6] inves-
tigate the use of code popularity metrics obtained from email commu-
nication among developers for defect prediction. Recent work by Bet-
tenburg et al. [9,10] use a variety of measures of social information to
study relationships between these measures and code quality.

— Qwnership metrics: There is previous defect modeling research focus-
ing on the ownership and developers’ expertise of source code. Early
work by Mockus and Weiss [38] define a metric to measure developers’
experience on a particular modification request. They use this metric to
predict defect. Bird et al. focus on the low-expertise developers. They
find that the contribution from low-expertise developers play a big role
in the defect prediction model. Rahman et al. [49] find that stronger
ownership by a single author is associated with implicated code. Re-
cent work by Posnett et al. [47] propose to use module activity focus
and developers’ attention focus to measure code ownership and devel-
opers’ expertise. They find that more focused developers are less likely
to introduce defects than less focused developers, and files that receive
narrowly focused activity are more likely to contain defects than files
that receive widely focused activities.

8 Weiyi Shang et al.

Due to the limitation of version control systems, most research on defect
modeling extract the process metrics on a code-commit level. Mylyn 4 is
a tool that can record developers’ activity in IDE. Using Mylyn enables
researchers to investigate finer-level process metrics. For example, Zhang
et al. [65] leverage data generated by Mylyn to investigate the effect of file
editing patterns on code quality.

Studies show that most product metrics are highly correlated to each other,
and so are process metrics [57]. Among all the product metrics, lines of code has
been shown to typically be the best metric to explain post-release defects [26].
On the other hand, prior commits and pre-release defects are the best metrics
among process metrics to explain post-release defects [19]. Prior research rarely
considers comments. However, a relatively recent empirical study by Ibrahim
et al. [27] studied the relationship between code comments and code quality.
They find that a code change in which a function and its comment are co-
updated inconsistently (i.e., they are not co-updated when they have been
frequently co-updated in the past, or vice versa), is a risky change. Hence
they have shown an empirical link between commenting characteristics and
code quality. Similarly, the goal of this paper is to investigate and establish
an empirical link between logging characteristics and code quality (quantified
through post-release defects).

4 Log-related Metrics

Prior research has shown that product metrics (like lines of code) and process
metrics (like number of prior commits) are good indicators of code quality.
Product metrics are obtained from a single snapshot of the system, which
describes the static status of the system. On the other hand, process metrics
require past information about the system, capturing the development history
of the system. Inspired by prior research, we define log-related metrics that
cover both these aspects, namely product and process.

4.1 Log-related product metrics

We propose two log-related product metrics, which we explain below.

1. Log density: We calculate the number of logging statements in each file.
We consider each invocation of a logging library method as a logging state-
ment. For example, with Log/j [4], a method invocation by “LOG” and
the method is one of the logging levels, e.g., “LOG.info()”, is considered
a logging statement. To factor out the influence of code size, we calculate
the log density (LOGD) of a file as:

of logging statements in the file
LOC

4 http://wiki.eclipse.org/Mylyn last checked on May 2013.

LOGD =

(1)

Relationship between Logging and Code Quality 9

where LOC' is the number of total lines of code in the source code file.

2. Average logging level: Logging level, such as “INFO” and “DEBUG”,
are used to filter logs based on their purposes. Intuitively, high-level logs are
for system operators and lower-level logs are for development purposes [17].
We transform the logging level of each logging statement into a quantitative
measurement. We consider all log levels including “TRACE”, “DEBUG”,
“INFO”, “WARN”, “ERROR”, “FATAL”. We consider that the lowest
logging level is 1 and the value of each higher logging level increases by 1.
For example, the lowest logging level in Log/j is “TRACE”, therefore we
consider the value of the “TRACE” level as 1. One level above “TRACE”
is “DEBUG”, so the value of a “DEBUG” level logging statement is 2. We
calculate the average logging-level (LEVELD) of each source code file as

> logging level value;

LEVELD = =1 (2)
n

where n is the total number of logging statements in the source code file and
logging level value; is the logging level value of the i** logging statement
in the source code file. The higher-level logs are used typically by adminis-
trators and lower-level logs are used by developers and testers. Hence the
log level acts as an indicator of the users of the logs. Our intuition behind
this metric is that some log levels are better indicators of defects.

4.2 Log-related process metrics

We propose two log-related process metrics, which we explain below.

1. Average number of log lines added or deleted in a commit: We
calculate the average amount of added and deleted logging statements in
each file prior to release (LOGADD and LOGDEL).

TPC
> # added logging statements;
_ =1
LOGADD = TPC (3)
TPC
> # deleted logging statements;
LOGDEL = = 4
OG TPC (4)

where T PC is the number of total prior commits to a file. Similar to
log-related product metrics which were normalized, we normalize the log-

related process metrics using T PC'. # added logging statements; or # deleted logging
statements; is the number of added or deleted logging statements in revi-

sion 7. The intuition behind this metric is that updating logging statements
frequently may be caused by extensive debugging or changes to the imple-
mentation of software components, which both may correlate to software

defects.

10 Weiyi Shang et al.

2. Frequency of defect-fixing code changes with log churn: We calcu-
late the number of defect-fixing commits in which there was log churn. We
calculated this metric (FCOC) as:

N(defect fixing commits Nlog churning commits)
TPC (5)

FCOC =

where N(defect fixzing commits Nlog changing commits) is the number
of bug-fixing commits in which there was log churn. The intuition behind
this metric is that developers may not be 100% confident of their fix to a
defect. Therefore, they might add some new logs or update old logs. Adding
new logging statements, deleting existing logging statements, and adding
new information to existing logging statements are all counted as log churn
in this metric.

5 Case Study Setup

To study the relation between logging characteristics and code quality, we con-
duct case studies on two large and widely used open-source platform software:

— Hadoop [1] is a large distributed data processing platform that implements
the MapReduce [15] data-processing paradigm. We use 4 releases (0.16.0
t0 0.19.0) of Hadoop in our case study.

— JBoss Application Server [2] (referred as “JBoss” in the rest of this
paper) is one of the most popular Java EE application servers. We use 4
releases (3.0 to 4.2) of JBoss in our case study.

The goal of our study is to examine the relationship between our proposed
log-related metrics and post-release defects. Previous studies of software de-
fects [10,57] typically use an Eclipse data set provided by Zimmermann et
al. [68]. We do not use this data set since we are interested in platform soft-
ware, where logging is more prominent. Eclipse does not have substantial log-
ging code, therefore, Eclipse is not an optimal subject system for our study.
Hadoop and JBoss are two of the largest and widely used platform software.
Both generate large amounts of logs during their execution, and tools have
been developed to monitor the status of both systems using their extensive
logs [3,48]. To avoid the noise from the logging statements in the unit testing
code in both projects, we exclude all the unit testing folders from our analysis.
Table 2 gives an overview of the subject systems.

Figure 1 shows a general overview of our approach. (A) We mine the SVN
repository of each subject system using a tool called J-REX [52] to produce
high-level source code change information. (B) We then identify the log-related
source code changes from the output of J-REX. (C) We calculate our proposed
log-related metrics and traditional metrics. (D) Finally, we use statistical tools,
such as R [28], to perform experiments on the data to answer our research
questions. In the rest of this section we describe the first 2 steps in more
detail.

10

Relationship between Logging and Code Quality 11

Table 2 Overview of subject systems.

Release | # changed files | # defects

Hadoop 0.16.0 1,211 98
0.17.0 1,899 180

0.18.0 3,084 218

0.19.0 3,579 175

JBoss 3.0 9,050 1,166
3.2 25,289 1,108

4.0 36,473 1,233

4.2 126,127 3,578

information
(A) (B) (C) (D)

—V Extracting dentiy Fxg"’:‘:ﬁ"%
‘ersion . ¢ . entitying " raditional L -
t - W ; \ d |Statistical
Control Ch?s%%| 50322 (l:etg':ge Evol(;J:t(;na the logging Locodlg and logging Io;—-rfec:g{ggarln?nv a:alilzls?:
Repositories statements metrics 9 ’
|

Fig. 1 Overview of our case study approach.

5.1 Extracting high-level source change information

Similar to C-REX [23], J-REX is used to study the evolution of the source code
of Java software systems. For each subject system, we use J-REX to extract
high-level source change information from their SVN repository.

The approach used by J-REX is broken down into three phases:

1. Extraction: J-REX extracts source code snapshots for each Java file re-
vision from the SVN repository.

2. Parsing: Using the Eclipse JDT parser, J-REX outputs an abstract syntax
tree for each extracted file in XML.

3. Differencing: J-REX compares the XML documents of consecutive file re-
visions to determine changed code units and generates evolutionary change
data. The results are stored in an XML document. There is one XML doc-
ument for each Java file.

As common practice in the software engineering research community, J-
REX uses defect-fixing changes [13,25,42] in each source code files to ap-
proximate the number of bugs in them. The approximation is widely adopted
because (1) only fixed defects can be mapped to specific source code files, (2)
some reported defects are not real, (3) not all defects have been reported, and
(4) there are duplicate issue reports.

To determine the defect-fixing changes, J-REX uses a heuristic proposed
by Mockus et al. [37] on all commit messages. For example, a commit message
containing the word “fix” is considered a message from a defect-fixing revision.
The heuristic can lead to false positives, however, an evaluation of the J-REX
heuristics shows that these heuristics identify defect-fixing changes with high
accuracy [7].

11

12 Weiyi Shang et al.

5.2 Identifying the Logging Statements

Software projects typically leverage logging libraries to generate logs. One
of the most widely used logging libraries is Log/j [4]. We manually browse a
sample of source code from each project and identify that both subject systems
use Log4j as their logging library.

Knowing the logging library of each subject system, we analyze the output
of J-REX to identify the logging source code fragments and changes. Typically,
logging source code contains method invocations that call the logging library.
For example, in Hadoop and JBoss, a method invocation by “LOG” with a
method name as one of the logging levels is considered a logging statement.
We count every such invocation as a logging statement.

6 Case Study Results

We now present the results of our case study. For each research question,
we discuss the motivation for the question, the approach used to address the
question and our experimental results. For our case study, we study the code
quality at the file level.

6.1 Preliminary Analysis

We start with a preliminary analysis of the log-related metrics presented in
Section 5 to illustrate the general properties of the collected metrics.

In the preliminary analysis we calculate seven aggregated metrics for each
release of both subject systems: total lines of code, total code churn (total
added, deleted and modified lines of code), total number of logging statements,
total log churn (total added and deleted logging statements), percentage of
source code files with logs, percentage of source code files with pre-release
defects, and percentage of source code files with post-release defects. Table 3
shows that around 18% to 28% of the source code files contain logging state-
ments. Since less than 30% of the source code files have logs, we calculate
the skew and Kurtosis values for our log-related metrics. We observe that our
log-related metrics have positive skew (i.e., all the metric values are on the
low scale) and large Kurtosis values (i.e., the curve is too tall). To alleviate
the bias caused by these high skew and Kurtosis values, we follow a typical
approach used in previous research [57]: to log transform all of the metrics.
From this point on, whenever we mention a metric, we actually are referring
to its log transformed value.

6.2 Results

RQ1. Are source code files with logging statements more defect-
prone?

12

Relationship between Logging and Code Quality 13

Table 3 Lines of code, code churn, amounts of logging statements, log churns, percentage
of files with logging, percentage of files with pre-release defects, and percentage of files with
post-release defects over the releases of Hadoop and JBoss.

Hadoop JBoss

0.16.0 0.17.0 0.18.0 0.19.0 3.0 3.2 4.0 4.2

lines of code 133K 108K 119K 169K | 321K 351K 570K 552K

code churn Tk 10k 9k 12k 489k 260k 346k 170K

logging statements 563 881 1,278 1,678 | 2,438 3,716 5,605 10,379

log churn 601 2,136 2272 1,579 | 6,233 5,357 5,966 18,614
percentage of

files 18% 26% 25% 28% 27% 23% 24% 23%
with logging
percentage of files

pre-release defects 16% 26% 27% 42% 50% 34% 27% 31%
percentage of files

with post-release defects 34% 27% 46% 29% 45% 34% 33% 26%

Motivation: Our qualitative study in Section 2 shows that software devel-
opers often add or modify logs to diagnose and fix software defects. We want
to first explore the data to study whether source code files with logging state-
ments are more likely to be defect-prone.

Approach: First, we calculate the post-release defect densities of each source
code file in each of the studied releases. We compare the average defect density
of source code files with and without logging statements. Then, we perform
independent two-sample unpaired one-tailed T tests to determine whether the
average defect-densities for source code files with logs are statistically greater
than the average defect-densities for source code files without logs. Finally,
we calculate the Spearman correlation between our log-related metrics and
post-release defects to determine if our metrics lead to similar prioritization
(i.e., similar order) with source code files with more bugs having higher metric
values.

Results and discussion:

We find that source code files with logging statements are more
defect-prone. Table 4 shows the average post-release defect densities of source
code files with and without logging statements. The results show that in 7 out
of the 8 studied releases, source code files with logging statements have higher
average post-release defect densities than source code files without logging
statements.

We use independent two-sample unpaired one-tailed T tests to determine
whether the average defect density of source code files with logs was sta-
tistically greater than those without logs. Our null hypothesis assumes that
the average post-release defect densities of source code files with and without
logging statements are similar. Our alternate hypothesis was that the aver-
age defect density of source code files with logs was statistically greater than
those without logs. For 5 of the 7 releases where source code files with logs
have higher defect density, the p-values are smaller than 0.05 (see Table 4).
We reject the null hypothesis and can conclude that in these 5 releases, the av-

13

14 Weiyi Shang et al.

Table 4 Average defect densities of the source code files with and without logging state-
ments in the studied releases. Largest defect densities are shown in bold. The p-value for
significance test is 0.05.

Hadoop JBoss

0.16.0 0.17.0 0.18.0 0.19.0 3.0 3.2 4.0 4.2

With | 0.116 0.142 0.249 0.140 | 0.172 0.145 0.101 0.092
logging

Without 0.095 0.083 0.250 0.124 0.122 0.101 0.075 0.090
logging

Statistically yes yes no no yes yes yes no
significant

erage defect density of source code files with logs is greater than those without
logs.

We examine in detail the release 0.18.0 of Hadoop, which is the exception
where the average defect densities of source code files with and without logs are
similar. We found that there is a structural change in Hadoop before release
0.18.0 and that a large number of defects appear after this release (largest
percentage of defect-prone source code files in Hadoop as shown in Table 3).
This might be the reason that in release 0.18.0 of Hadoop, the software source
code files with logging statements are not more defect-prone.

Log-related metrics have positive correlation with post-release
defects. Table 5 presents the Spearman correlations between our log-related
metrics and post-release defects. We find that, in 7 out of 8 releases, the largest
correlations between log-related metrics and post-release defects are similar
(3 releases with a +/— 0.03 value) or higher than the correlations between
pre-release defects and post-release defects. Since the number of pre-release
defects is known to have a positive correlation with post-release defects, this
observation supports our intuition of studying the relation between logging
characteristics and code quality.

For the only exception (release 3.0 of JBoss), we examine the results more
closely and find that the correlation between log-related metrics and post-
release defects in this version of JBoss is not very different from the other
releases of JBoss. However, the correlation between pre-release defects and
post-release defects in this version of JBoss is much higher even when com-
pared to the other releases of JBoss. On further analysis of the data, we found
that in release 3.0 of JBoss, up to 50% more files (as compared to other re-
leases) had pre-release defects. Therefore, we think that this might be the
reason that the correlation between pre-release defect and post-release defects
in release 3.0 of JBoss is higher than the correlation between post-release
defects and our log-related metrics.

Density of logging statements added has higher correlation with
post-release defects than density of logging statements deleted. We
find that the average logging statements added in a commit has the largest
correlation with post-release defects in 5 out of 8 releases, while the correlation
between the average deleted logging statements in a commit and post-release

14

Relationship between Logging and Code Quality 15

Table 5 Spearman correlation between log-related metrics and post-release defects. Largest
number in each release is shown in bold.

Hadoop
0.16.0 0.17.0 0.18.0 0.19.0
LOGD 0.36 0.26 0.24 0.24
LEVELD 0.36 0.25 0.22 0.23
LOGADD 0.42 0.27 0.28 0.24
LOGDEL 0.23 0.09 0.21 0.10
FCOC 0.25 0.30 0.18 0.17
PRE 0.15 0.27 0.25 0.12

JBoss
3.0 3.2 4.0 4.2
LOGD 0.26 0.26 0.21 0.13
LEVELD 0.26 0.27 0.22 0.13
LOGADD 0.34 0.29 0.59 0.19
LOGDEL 0.34 0.18 0.42 0.13
FCOC 0.23 0.20 0.20 0.14
PRE 0.40 0.22 0.21 0.22

defects is much lower than the other log-related metrics (see Table 5). We
count the number of added and deleted logging statements in source code files
with and without defects separately. We find that in Hadoop, the total lines of
code ratio between defect-prone source code files and non defect-prone source
code files is 1.03; while the number of logging statements added in defect-
prone source code files (2,309) is around 3 times that of the number of logging
statements added (736) in non defect-prone source code files. This shows that
there exists a relation between logs and defect-prone source code files. However,
the number of logging statements deleted in defect-prone source code files (268)
is only around 2 times that of the number of logging statements deleted in non
defect-prone source code files(124). Therefore, even though developers delete
more log lines in defect-prone source code files, the ratio with non defect-prone
source code files is much lower in comparison to the ratio for log lines added.
Hence, this shows that the developers may delete logs when they feel confident
with their source code files. Concrete examples of such logging behaviour has
been presented in Section 2.

Summary: We find that in 7 out of 8 studied releases, source code files
with logging statements have higher average post-release defect densities than
those without logging statements. In 5 of these 7 releases, the differences of
average defect density between the source code files with and without logs
are statistically significant. The correlations between log-related metrics and
post-release defects are similar to the correlations between post-release defects
and pre-release defects (one of the highest correlated metrics to post-release
defects). Among the log-related metrics, average logging statements added in
a commit has the highest correlation with post-release defects.

Source code files with logging statements tend to be more defect-
prone.

15

16 Weiyi Shang et al.

Table 6 Spearman correlation between the two log-related product metrics: log density
(LOGD) and average logging level (LEVELD), and the three log-related process metrics:
average logging statements added in a commit (LOGADD), average logging statements
deleted in a commit (LOGDEL), and frequency of defect-fixing code changes with log churn
(FCOC).

Hadoop JBoss
0.16.0 0.17.0 0.18.0 0.19.0 3.0 3.2 4.0 4.2

LOGD and LEVELD 0.74 0.62 0.41 0.64 | 0.58 0.16 0.19 0.26
LOGADD and FCOC 0.49 0.46 0.69 0.47 | 0.68 0.58 0.59 0.56
LOGDEL and FCOC 0.25 0.36 0.48 0.18 | 048 0.43 043 0.36
LOGADD and LOGDEL 0.56 0.50 0.59 0.55 | 0.59 0.52 0.54 0.55

RQ2. Can log-related metrics help in explaining post-release de-
fects?

Motivation: In the previous research question, we show the correlation be-
tween logging characteristics and post-release defects. However there is chance
that such correlations may be due to other factors, such as lines of code be-
ing correlated to both the logging characteristics and post-release defects. To
further understand the relationship between logging characteristics and post-
release defects, in this research question, we control for factors that are known
to be the best explainers of post-release defects, i.e., lines of code, pre-release
defects, and code churn. In particular, we would like to find out whether we
can complement the ability of traditional software metrics in explaining post-
release defects by using logging characteristics (i.e., our proposed log-related
product and process metrics).

Approach: We use logistic regression models to study the explanatory power
of our log-related metrics on post-release defects. However, previous studies
show that traditional metrics, such as lines of code (LOC), code churn or the
total number of prior commits (TPC), and the number of prior defects (PRE),
are effective in explaining post-release software defects [20,42]. Therefore, we
included these metrics as well in the logistic regression models. Note that
many other product and process software metrics are highly correlated with
each other [57]. To avoid the collinearity between TPC and PRE, we run PCA
on TPC and PRE and use the first component as a new metric, which we call
TPCPRE:

TPCPRE = PCA(TP07 PRE)firstcomponent (6)

Before building the logistic regression models, we study the Spearman cor-
relation between the two log-related product metrics and the three log-related
process metrics. From the results in Table 6, we find that in some releases,
the correlations between the two log-related product metrics and between the
three log-related process logging metrics are high.

To address the collinearity as noted in Table 6, we derive two new metrics:
a log-related product metric (PRODUCT) and a log-related process metric
(PROCESS), to capture the product and process aspects of logging respec-
tively. To compute the two new metrics, we ran Principal Component Anal-
ysis (PCA) [29] once on the log-related product metrics (i.e., log density and

16

Relationship between Logging and Code Quality 17

average logging level), and another time on the log-related process metrics
(average logging statements added in a commit and frequency of defect-fixing
code changes with log churn) [22]. Since the previous section shows that av-
erage deleted logging statements (LOGDEL) has rather low correlation with
post-release defect (see Table 5), we decided not to include LOGDEL in the
rest of our analysis and models. From each PCA run, we use the first principal
component as our new metric.

PRODUCT = PCA(LOGD, LEV ELD) firstcomponent (7)

PROCESS = PCA(LOGADD, FCOC) firstcomponent (8)

We used the two combined metrics (PRODUCT and PROCESS) for the rest
of the paper, so that we can build the same models across releases without
worrying about the impact of collinearity on our results.

We want to see whether the log-related metrics can complement traditional
product and process based software metrics in providing additional explana-
tory power. The overview of the models is shown in Figure 2. We start with
three baseline models that use these best-performing traditional metrics as
independent variables.

— Base(LOC): The first base model is built using lines of code as an inde-
pendent variable to measure the explanatory power of traditional product
metrics.

— Base(TPCPRE): The second base model is built using a combination of
pre-release defects and prior changes as independent variables to measure
the explanatory power of traditional process metrics.

— Base(LOC+TPCPRE): The third base model is built using lines of
code and the combination of pre-release defects and prior changes as in-
dependent variables to measure the explanatory power of both traditional
product and process metrics.

We then build subsequent models in which we add our log-related metrics as
independent variables.

— Base(LOC)+PRODUCT: We add our log-related product metric (PROD-
UCT) to the base model of product metrics to examine the improvement
in explanatory power due to log-related product metrics.

— Base(TPCPRE)+PROCESS: We add our log-related process metric
(PROCESS) to the base model of process metrics to examine the improve-
ment in explanatory power due to log-related process metrics.

— Base(LOC+TPCPRE)+PRODUCT: We add log-related product met-
ric (PRODUCT) to the base model Base(LOC+TPCPRE) to examine the
improvement in explanatory power due to log-related product metrics.

— Base(LOC+TPCPRE)+PROCESS: We add log-related process met-
rics (PROCESS) to the base model Base(LOC+TPCPRE) to examine the
improvement in explanatory power due to log-related process metrics.

17

18 Weiyi Shang et al.

Base(LOC) —> - | PRODUCT —>|Base(LOC)+PRODUCT |

Base(TPCPRE) —— + | prOCESS —>|Base(TPCPRE)+PROCESS |

/ -+ | PrRODUCT —>| Base(LOC+TPCPRE)+PROCESS |

Base(LOC+TPCPRE)
Base(LOC+TPCPRE) ->+L PRODUCT]+ L PROCESS]-) +PROCDUCT+PROCESS

Base(LOC+TPCPRE)
\ + —_

PROCESS +PROCDUCT

- /

Fig. 2 Overview of the models built to answer RQ2. The results are shown in Table 7, 8
and 9.

— Base(LOC+TPCPRE)+PRODUCT+PROCESS: Finally, we add both
log-related product metric (PRODUCT) and log-related product metric
(PROCESS) into the base model Base(LOC+TPCPRE) to examine the
improvement in explanatory power due to both log-related metrics.

For each model, we calculate the deviance explained by the models to
measure their explanatory power. A higher percentage of deviance explained
generally indicates a better model fit and higher explanatory power for the
independent variables.

To understand the relationship between logging characteristics and post-
release defects, we need to understand the effect of the metrics in the model.
We follow a similar approach used in prior research [36,58]. To quantify this
effect, we set all of the metrics in the model to their mean value and record
the predicted probabilities. Then, to measure the effect of every log metric,
we keep all of the metrics at their mean value, except for the metric whose
effect we wish to measure. We increase the value of that metric by 10% off
the mean value and re-calculate the predicted probability. We then calculate
the percentage of difference caused by increasing the value of that metric by
10%. The effect of a metric can be positive or negative. A positive effect means
that a higher value of the factor increases the likelihood, whereas a negative
effect means that a higher value of the factor decreases the likelihood of the
dependent variable. This approach permits us to study metrics that are of
different scales, in contrast to using odds ratios analysis, which is commonly
used in prior research [57].

We would like to point out that although logistic regression has been used
to build accurate models for defect prediction, our purpose of using the re-
gression model in this paper is not for predicting post-release defects. Our
purpose is to study the explanatory power of log-related metrics and explore
its empirical relation to post-release defects.

Results and discussion:

18

Relationship between Logging and Code Quality 19

Table 7 Deviance explained (%) improvement for product software metrics by logistic
regression models.

Hadoop
0.16.0 0.17.0 0.18.0 0.19.0
Base(LOC) 14.37 12.74 3.23 8.14
Base+PRODUCT | 15.85(+10%)* 12.76 (+0%) 4.62(4+43%)** 9.7(19%)***
JBoss
3.0 3.2 4.0 4.2
Base(LOC) 5.26 5.67 1.49 2.28
Base+PRODUCT | 6.25(+19%) *** 6.41(+13%)*** 4.93(+10%)*** 2.56(+12%)***

FR¥ 5<0.001, ** p<0.01, * p<0.05, o p <0.1

Log-related metrics complement traditional metrics in explaining
post-release defects. Table 7 shows the results of using lines of code (LOC)
as the base model. We find that the log-related product metric (PRODUCT)
provides statistically significant improvement in 7 out of the 8 studied releases.
The log-related product metric (PRODUCT) provides up to 43% improvement
in explanatory power over the Base (LOC) model.

Table 8 shows the results of using process metrics (TPCPRE) as the base
model. In 5 out of 8 models, the log-related process metric (PROCESS) pro-
vides statistically significant (p < 0.05) improvement. In particular, release
0.16.0 of Hadoop has the largest improvement (360%) over the base model.

Table 9 shows the results of using both product and process metrics in the
base models. In all studied releases, except for release 0.17.0 of Hadoop, at least
one log-related metric is statistically significant in enhancing the base model
(in bold font). The log-related metrics provide up to 40% of the explanatory
power of the traditional metrics.

Release 0.17.0 of Hadoop is the release where neither product nor process
log-related metrics are significant. In that release, we noted that source code
files with logs increased from 18% to 26% (see Table 3). Some logs may be
added into defect-free source code files when there is such a large increase
in logs. We performed an independent two-sample unpaired two-sided T-test
to determine whether the average log-densities of source code files with post-
release defects was statistically different to the average log-densities of source
code files without post-release defects. The p-value of the test is 0.22. Hence
there is no statistical evidence to show that the log-densities of defect-prone
and defect-free source code files differ in release 0.17.0 of Hadoop. We think this
might be the reason that log-released product metrics do not have significant
explanation power in Hadoop release 0.17.0.

Log-related metrics have a positive effect on the likelihood of
post-release defects. In Table 10 we show the effect of the PRODUCT and
PROCESS metrics on post-release defects. We measure effect by increasing the
value of a metric by 10% from its mean value, while keeping all other metrics
at their mean value in a model. We only discuss the effect of log-related metrics
that are statistically significant in model Base(LOC+TPCPRE)+PRODUCT
+PROCESS (shown in Table 9). The effects of log-related product metric

19

20 Weiyi Shang et al.

Table 8 Deviance explained (%) improvement for process software metrics by logistic re-
gression models.

Hadoop
0.16.0 0.17.0 0.18.0 0.19.0
Base(TPCPRE) 2.49 8.47 4.53 2.44
Base+PROCESS | 11.47(4+360%)*** 8.55 (+1%) 5.09 (+12%) ¢ 3.69(451%)***
JBoss
3.0 3.2 4.0 4.2
Base(TPCPRE) | 10.38 3.75 1.56 2.37
Base+PROCESS | 10.55(4+2%) ¢ 4.71(+26%)*** 4.83(+6%)*** 2.73(4+15%)***

FF% 5<0.001, ** p<0.01, * p<0.05, o p <0.1

Table 9 Deviance explained (%) improvement using both product and process soft-
ware metrics by logistic regression models. The values are shown in bold if the model
“Base+PRDUCT+PROCESS” has at least one log metric statistically significantly.

Hadoop
0.16.0 0.17.0 0.18.0 0.19.0
Base(LOC+TPCPRE) | 14.69 13.34 5.3 8.32
Base+PRODUCT 16.56(+13%)** 13.34 (+0%) 6.21 (+17%)* 9.84(+18%)***
Base+PROCESS 19.17(4+30%)** 13.4 (+0%) 5.72 (+8%) 8.85(+6%)*
Base+PRODUCT 20.5(+40%) 13.42 (+1%) 6.36 (+20%) 9.98(420%)
+PROCESS
JBoss
3.0 3.2 4.0 4.2
Base(LOC+TPCPRE) | 12.09 6.46 6.45 3.22
Base+PRODUCT 12.79(+6%)*** 6.98 (+8%)*** 6.69 (+4%)** 3.34(+4%)*
Base+PROCESS 12.09(4+0%) 6.94 (+8%)*** 6.51 (+1%)* 3.41(+6%)**
Base+PRODUCT 12.93(4+7%) 7.23 (+12%) 6.73 (+4%) 3.47(4+8%)
+PROCESS

FF¥ 5<0.001, ** p<0.01, * p<0.05, o p<0.1

(PRODUCT) are positive. Since log-related product metric (PRODUCT) is
the combination of log density and average logging level, this result implies
that more logging statements and/or a higher logging level lead to a higher
probability of post-release defects. Table 10 shows that in all 4 releases where
the log-related process metric (PROCESS) is statistically significant, the log-
related process metric (PROCESS) has a positive effect on defect proneness.
The result shows that in some cases, developers change logs to monitor compo-
nents that might be defect-prone. For example, in revision 226841 of Hadoop,
developers enhanced the logging statement that tracks nodes in the machine
cluster to determine the rationale for field failure of nodes in their cluster.
Therefore, in some source code files, the more logs added and/or more defect
fixes with log churns, the higher the probability that the source code file is
defect-prone.

Summary: Log-related metrics complement traditional product and process
metrics in explaining post-release defects. In particular, log-related product
metrics contribute to an increased explanatory power in 7 out of 8 studied
releases, and log-related process metrics contribute to an increased explanatory

20

Relationship between Logging and Code Quality 21

Table 10 Effect of log-related metrics on post-release defects. Effect is measured by
setting a metric to 110% of its mean value, while the other metrics are kept at their
mean values. The bold font indicates that the metric is statistically significant in the
Base(LOC+TPCPRE)+PRODUCT+PROCESS model.

Hadoop
0.16.0 0.17.0 0.18.0 0.19.0
PRODUCT 2.2% -0.1% 1.9% 3.6%
PROCESS 2.5% 0% 0.3% 0.3%

JBoss
3.0 3.2 4.0 4.2
PRODUCT 1.8% 0.8% 0.7% 4.7%
PROCESS -0.5% 0.5% 0.1% 2.5%

power in 5 out of 8 studied releases. We also find that both log-related product
and process metrics have positive effect on defect proneness.

Our results show that there exists a strong relationship between log-
ging characteristics and code quality.

7 Threats to Validity

This section discusses the threats to the validity of our study.
External Validity

Our study is performed on JBoss and Hadoop. Even though both subject
systems have years of history and large user bases, more case studies on other
platform software in other domains are needed to see whether our findings
can be generalized. There are other types of software systems that make use
of logs only while the system is under development. The logs are removed
when the system is released. Even though such systems do not benefit from
the field feedback through logs, logging is still a major approach in diagnosing
and fixing defects. Our findings may generalize to such software systems. We
plan to perform a study on logs of such types of systems.

Internal Validity

Our study is based on the version control repositories of the subject sys-
tems. The quality of the data contained in the repositories can impact the
internal validity of our study.

Our analysis of the link between logs and defects cannot claim causal ef-
fects, as we are investigating correlations, rather than conducting impact stud-
ies. The explanative power of log-related metrics on post-release defects does
not indicate that logs cause defects. Instead, it indicates the possibility of a
relation that should be studied in depth through user studies.

The deviance explained in some of the models may appear low, however
this is expected and should not impact the conclusions. One reason for such
low deviance is that in a few releases, the percentage of source code files with
defects are less than 30% [35,67]. Moreover, only around 20% to 30% of the

21

22 Weiyi Shang et al.

source code files contain logging statements. The deviance explained can be
increased by adding more variables to the model in RQ2, however we would
need to deal with the interaction between the added variables.

Construct Validity

The heuristics to extract logging source code may not be able to extract
every logging statement in the source code. However, since the case study
systems use logging libraries to generate logs at runtime, the method in the
logging statements are consistent. Hence, this heuristic will capture all the
logging statements.

Our software defect data is based on the data produced by J-REX, a soft-
ware evolution tool that generates high-level evolutionary source code change
data. J-REX uses heuristics to identify defect-fixing changes. The results of this
paper are dependent on the accuracy of the results from J-REX. We are confi-
dent in the results from J-REX as it implements the algorithm used previously
by Hassan et al. [24] and Mockus et al. [37]. However, previous research shows
that the mis-classified bug-fixing commits may introduce negative effects on
the performance of prediction techniques on post-release defects [11]. We select
a random sample of 337 and 366 files for Hadoop and JBoss, respectively. Only
14% and 2% of the files for Hadoop and JBoss are misclassified, respectively.
Both random sample sizes achieve 95% confidence level with a 5% confidence
interval [59]. We will leverage other approaches that identify bug-fixing com-
mits, such as the data in the issue tracking systems, to perform additional
case studies in our future work to further understand the relationship between
logging characteristics and code quality. J-REX compares the abstract syntax
trees between two consecutive code revisions. A modified logging statement is
reported by J-REX as an added and a deleted logging statement. Such limi-
tation of J-REX may result in inaccuracy of our metrics. We plan to leverage
other techniques to extract the log-related metrics in our future case studies.

In addition, we find that on average, there is a logging statement for every
160 and 130 lines of source code for Hadoop and JBoss, respectively. A previous
study by Yuan et al. [64] shows that the ratio between all source code and
logging code is 30. We think the reason for such a discrepancy is that the
log density metric (LOGD) defined in this paper uses the number of logging
statements instead of lines of logging code, and the total lines of code instead
of source lines of code. We calculated the ratio between total lines of code
and number of logging statements for the four subject systems studied in
prior research. We found that the ratios are 155, 146, 137 and 70 for Htipd,
Openssh, PostgreSQL and Squid, respectively. Such ratios are similar to the
ratios in our two studied systems. In this paper, we extract our log-related
metrics from AST. We chose to use the AST so that we can accurately extract
every invocation to a logging method. Hence due to this choice, we can only get
the number of logging statements and not number of lines of logging code. We
will compare the metric using the log density metric with the lines of logging
code and source lines of code to our log density metric (LOGD) in future case
studies.

22

Relationship between Logging and Code Quality 23

The possibility of post-release defects can be correlated to many factors
other than just logging characteristics, such as the complexity of code and
pre-release defects. To reduce such a possibility, we included 3 control metrics
(lines of code, pre-release defects, and prior changes) that are well known to be
good predictors for post-release defects in our logistic regression model [39,42].
However, other factors may also have an impact on post-release defects. Future
studies should build more complex models that consider these other factors.

Source code from different components of a system may have various char-
acteristics. Logs may play different roles in components with different levels of
importance. Value and importance of code is a crucial topic, yet it has been
rarely investigated. However, this paper introduces a way to use logs as a proxy
to investigate the role of different parts of the code.

8 Conclusion

Logging is one of the most frequently-employed approaches for diagnosing and
fixing software defects. Logs are used to capture the concerns and doubts
from developers as well as operators’ needs for run-time information about
the software. However, the relationship between logging characteristics and
software quality has never been empirically studied before. This paper is a
first attempt (to the best of our knowledge) to build an empirical link between
logging characteristics and software defects. The highlights of our findings are:

— We found that source code files with logging statements have higher post-
release defect densities than those without logging statements.

— We found a positive correlation between source code files with log lines
added by developers and source code files with post-release defects.

— We found that log-related metrics complement traditional product and
process metrics in explaining post-release defects.

Our findings do not advocate the removal of logs that are a critical instrument
used by developers to understand and monitor the field quality of their soft-
ware. Instead, our findings suggest that software maintainers should allocate
more preventive maintenance effort on source code files with more logs and
log churn, since such source code files might be the ones where developers
and operators may have more doubts and concerns, and hence are more defect
prone.

References

Hadoop. Http://hadoop.apache.org

Jboss application server. Http://www.jboss.org/jbossas
Jbossprofiler. Https://community.jboss.org/wiki/JBossProfiler
Log4j. Http://logging.apache.org/logdj/1.2/

Summary of sarbanes-oxley act of 2002. Http://www.soxlaw.com/

A

23

24

Weiyi Shang et al.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

24

. Bacchelli, A., D’Ambros, M., Lanza, M.: Are popular classes more defect prone? In:

FASE ’10: Proceedings of the 13th international conference on Fundamental Approaches
to Software Engineering, pp. 59-73. Springer-Verlag, Berlin, Heidelberg (2010)

. Barbour, L., Khomh, F., Zou, Y.: Late propagation in software clones. In: ICSM 2011:

Proceedings of the 27th IEEE International Conference on Software Maintenance, pp.
273 ~282 (2011)

. Beschastnikh, I., Brun, Y., Schneider, S., Sloan, M., Ernst, M.D.: Leveraging existing

instrumentation to automatically infer invariant-constrained models. In: ESEC/FSE
’11: Proceedings of the 19th ACM SIGSOFT symposium and the 13th European con-
ference on Foundations of software engineering, pp. 267-277. ACM, New York, NY,
USA (2011)

. Bettenburg, N., Hassan, A.: Studying the impact of social interactions on software

quality. Empirical Software Engineering 18(2), 375-431 (2013)

Bettenburg, N., Hassan, A.E.: Studying the impact of social structures on software
quality. In: ICPC ’10: Proceedings of the 18th International Conference on Program
Comprehension, pp. 124-133. IEEE Computer Society, Washington, DC, USA (2010)
Bird, C., Bachmann, A.; Aune, E., Dufly, J., Bernstein, A., Filkov, V., Devanbu, P.:
Fair and balanced?: bias in bug-fix datasets. In: ESEC/FSE ’09: Proceedings of the
the 7th joint meeting of the European software engineering conference and the ACM
SIGSOFT symposium on The foundations of software engineering, pp. 121-130. ACM,
New York, NY, USA (2009)

Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent dirichlet allocation. J. Mach. Learn. Res. 3,
993-1022 (2003)

Cataldo, M., Mockus, A., Roberts, J.A., Herbsleb, J.D.: Software dependencies, work
dependencies, and their impact on failures. IEEE Transaction on Software Engineering
35, 864-878 (2009)

Chen, T.H., Thomas, S.W., Nagappan, M., Hassan, A.E.: Explaining software defects
using topic models. In: MSR, pp. 189-198. IEEE (2012)

Dean, J., Ghemawat, S.: Mapreduce: simplified data processing on large clusters. Com-
mun. ACM 51(1), 107-113 (2008)

Fenton, N., Neil, M.: A critique of software defect prediction models. Software Engi-
neering, IEEE Transactions on 25(5), 675-689 (1999)

Gilstrap, B.R.: An introduction to the java logging api (2002)

Graham, R., Woodall, T., Squyres, J.: The Practice of Programming (2006)

Graves, T.L., Karr, A.F., Marron, J., Siy, H.: Predicting fault incidence using software
change history. IEEE Transactions on Software Engineering 26(7), 653-661 (2000)
Graves, T.L., Karr, A.F., Marron, J.S., Siy, H.: Predicting fault incidence using software
change history. IEEE Transaction on Software Engineering 26, 653-661 (2000)

Hall, T., Beecham, S., Bowes, D., Gray, D., Counsell, S.: A systematic literature review
on fault prediction performance in software engineering. Software Engineering, IEEE
Transactions on 38(6), 1276-1304 (2012)

Harrell, F.: Regression Modeling Strategies With Applications to Linear Models, Logis-
tic Regression, and Survival Analysis. Springer (2001)

Hassan, A.E.: Mining software repositories to assist developers and support managers.
Ph.D. thesis, University of Waterloo (2005)

Hassan, A.E.: Automated classification of change messages in open source projects. In:
SAC ’08: Proceedings of the 2008 ACM symposium on Applied computing, pp. 837-841.
ACM, New York, NY, USA (2008)

Hassan, A.E.: Predicting faults using the complexity of code changes. In: ICSE ’09:
Proceedings of the 2009 IEEE 31st International Conference on Software Engineering,
pp. 78-88. IEEE Computer Society, Washington, DC, USA (2009)

Herraiz, 1., Hassan, A.: Beyond lines of code: Do we need more complexity metrics? In:
A. Oram, G. Wilson (eds.) Making Software: What Really Works, and Why We Believe
1t? OReilly Media (2010)

Relationship between Logging and Code Quality 25

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

Ibrahim, W.M., Bettenburg, N., Adams, B., Hassan, A.E.: On the relationship between
comment update practices and software bugs. Journal of Systems and Software 85(10),
2293-2304 (2012)

Thaka, R., Gentleman, R.: R: a language for data analysis and graphics. Journal of
computational and graphical statistics pp. 299-314 (1996)

Jackson, J., Wiley, J.: A user’s guide to principal components, vol. 19. Wiley Online
Library (1991)

Jiang, W., Hu, C., Pasupathy, S., Kanevsky, A., Li, Z., Zhou, Y.: Understanding cus-
tomer problem troubleshooting from storage system logs. In: FAST ’09: Proccedings of
the 7th conference on File and storage technologies, pp. 43-56. USENIX Association,
Berkeley, CA, USA (2009)

Jiang, Z.M., Hassan, A.E., Hamann, G., Flora, P.: Automatic identification of load test-
ing problems. In: ICSM ’08: Proc. of 24th IEEE International Conference on Software
Maintenance, pp. 307-316. IEEE, Beijing, China (2008)

Jiang, Z.M., Hassan, A.E., Hamann, G., Flora, P.: Automated performance analysis of
load tests. In: ICSM ’09: Proc. of the 25th IEEE International Conference on Software
Maintenance, pp. 125-134. IEEE, Edmonton, Alberta, Canada (2009)

Liu, Y., Poshyvanyk, D., Ferenc, R., Gyimothy, T., Chrisochoides, N.: Modeling class
cohesion as mixtures of latent topics. In: ICSM 2009: Proceedings of the 2009 IEEE
International Conference on Software Maintenance., pp. 233-242 (2009)

Meneely, A., Williams, L., Snipes, W., Osborne, J.: Predicting failures with developer
networks and social network analysis. In: SIGSOFT ’08/FSE-16: Proceedings of the
16th ACM SIGSOFT International Symposium on Foundations of software engineering,
SIGSOFT ’08/FSE-16, pp. 13-23. ACM, New York, NY, USA (2008)

Menzies, T., Greenwald, J., Frank, A.: Data mining static code attributes to learn defect
predictors. Software Engineering, IEEE Transactions on 33(1), 2-13 (2007)

Mockus, A.: Organizational volatility and its effects on software defects. In: FSE ’10:
Proc. of the 18th ACM SIGSOFT International Symp. on Foundations of software
engineering, pp. 117-126. ACM, New York, NY, USA (2010)

Mockus, A., Votta, L.G.: Identifying reasons for software changes using historic
databases. In: ICSM ’00: Proceedings of the International Conference on Software
Maintenance, pp. 120—-. IEEE Computer Society, Washington, DC, USA (2000)
Mockus, A., Weiss, D.M.: Predicting risk of software changes. Bell Labs Technical
Journal 5, 169-180 (2000)

Moser, R., Pedrycz, W., Succi, G.: A comparative analysis of the efficiency of change
metrics and static code attributes for defect prediction. In: ICSE 2008: Proceedings
of the 30th international conference on Software engineering, pp. 181-190. ACM, New
York, NY, USA (2008)

Nagappan, N., Ball, T.: Use of relative code churn measures to predict system defect
density. In: ICSE ’05: Proc. of the 27th international conference on Software engineering,
pp. 284-292. ACM, New York, NY, USA (2005)

Nagappan, N., Ball, T.: Using software dependencies and churn metrics to predict field
failures: An empirical case study. In: ESEM ’07: Proceedings of the First International
Symposium on Empirical Software Engineering and Measurement, pp. 364-373. IEEE
Computer Society, Washington, DC, USA (2007)

Nagappan, N., Ball, T., Zeller, A.: Mining metrics to predict component failures. In:
ICSE ’06: Proceedings of the 28th international conference on Software engineering, pp.
452-461. ACM, New York, NY, USA (2006)

Nguyen, T.H.D., Adams, B., Hassan, A.E.: Studying the impact of dependency network
measures on software quality. In: ICSM ’10: Proceedings of the 2010 IEEE International
Conference on Software Maintenance, pp. 1-10. IEEE Computer Society, Washington,
DC, USA (2010)

Nguyen, T.T., Nguyen, T.N., Phuong, T.M.: Topic-based defect prediction (nier track).
In: ICSE ’11: Proceedings of the 33rd International Conference on Software Engineering,
pp. 932-935. ACM, New York, NY, USA (2011)

25

26

Weiyi Shang et al.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

26

Ohlsson, N., Alberg, H.: Predicting fault-prone software modules in telephone switches.
IEEE Trans. Softw. Eng. 22, 886-894 (1996)

Pinzger, M., Nagappan, N., Murphy, B.: Can developer-module networks predict fail-
ures? In: SIGSOFT ’08/FSE-16: Proceedings of the 16th ACM SIGSOFT International
Symposium on Foundations of software engineering, pp. 2-12. ACM, New York, NY,
USA (2008)

Posnett, D., D'Souza, R., Devanbu, P., Filkov, V.: Dual ecological measures of
focus in software development. In: ICSE ’13: Proceedings of the 2013 International
Conference on Software Engineering, pp. 452-461. IEEE Press, Piscataway, NJ, USA
(2013)

Rabkin, A., Katz, R.: Chukwa: a system for reliable large-scale log collection. In:
LISA’10: Proc. of the 24th international conference on Large installation system ad-
ministration, pp. 1-15. USENIX, Berkeley, CA, USA (2010)

Rahman, F., Devanbu, P.: Ownership, experience and defects: a fine-grained study of
authorship. In: ICSE ’11: Proceedings of the 33rd International Conference on Software
Engineering, pp. 491-500. ACM, New York, NY, USA (2011)

Rahman, F., Devanbu, P.: How, and why, process metrics are better. In: ICSE ’13:
Proceedings of the 2013 International Conference on Software Engineering, pp. 432—
441. IEEE Press, Piscataway, NJ, USA (2013)

Seaman, C.B., Shull, F., Regardie, M., Elbert, D., Feldmann, R.L., Guo, Y., Godfrey,
S.: Defect categorization: making use of a decade of widely varying historical data. In:
ESEM ’08: Proceedings of the Second ACM-IEEE international symposium on Empir-
ical software engineering and measurement, pp. 149-157. ACM, New York, NY, USA
(2008)

Shang, W., Jiang, Z.M., Adams, B., Hassan, A.E.: MapReduce as a General Framework
to Support Research in Mining Software Repositories (MSR). In: MSR ’09: Proceedings
of 6th IEEE International Working Conference on Mining Software Repositories, pp.
21-30 (2009)

Shang, W., Jiang, Z.M., Adams, B., Hassan, A.E., Godfrey, M.W., Nasser, M., Flora, P.:
An exploratory study of the evolution of communicated information about the execution
of large software systems. In: WCRE 2011: Proceedings of the 2011 18th Working
Conference on Reverse Engineering, pp. 335-344. IEEE Computer Society, Washington,
DC, USA (2011)

Shang, W., Jiang, Z.M., Adams, B., Hassan, A.E., Godfrey, M.W., Nasser, M., Flora,
P.: An exploratory study of the evolution of communicated information about the exe-
cution of large software systems. In: WCRE ’11: Proceedings of the 2011 18th Working
Conference on Reverse Engineering, pp. 335-344. IEEE Computer Society, Washington,
DC, USA (2011)

Shang, W., Jiang, Z.M., Adams, B., Hassan, A.E., Godfrey, M.W., Nasser, M., Flora, P.:
An exploratory study of the evolution of communicated information about the execution
of large software systems. Journal of Software: Evolution and Process pp. n/a-n/a (2013)
Shihab, E.: An exploration of challenges limiting pragmatic software defect prediction.
Ph.D. thesis, Queen’s University (2012)

Shihab, E., Jiang, Z.M., Ibrahim, W.M., Adams, B., Hassan, A.E.: Understanding the
impact of code and process metrics on post-release defects: a case study on the eclipse
project. In: ESEM ’10: Proc. of the 2010 ACM-IEEE Int. Symposium on Empirical
Software Engineering and Measurement, pp. 4:1-4:10. ACM, New York, NY, USA (2010)
Shihab, E., Mockus, A., Kamei, Y., Adams, B., Hassan, A.E.: High-impact defects: a
study of breakage and surprise defects. In: ESEC/FSE ’11: Proc. of the 19th ACM
SIGSOFT symp. and the 13th Euro. conf. on Foundations of software engineering, pp.
300-310. ACM, NY, USA (2011)

Smithson, M.: Confidence Intervals. Sage Publications, Thousand Oaks, CA, USA
(2003)

Tan, J., Pan, X., Kavulya, S., Gandhi, R., Narasimhan, P.: Salsa: analyzing logs as
state machines. In: WASL’08: Proceedings of the 1st USENIX conference on Analysis

Relationship between Logging and Code Quality 27

61.

62.

63.

64.

65.

66.

67.

68.

of system logs, pp. 6-6. USENIX, San Diego, California (2008)

Wolf, T., Schroter, A., Damian, D., Nguyen, T.: Predicting build failures using social
network analysis on developer communication. In: ICSE ’09: Proceedings of the 31st
International Conference on Software Engineering, pp. 1-11. IEEE Computer Society,
Washington, DC, USA (2009)

Xu, W., Huang, L., Fox, A., Patterson, D., Jordan, M.I.: Detecting large-scale system
problems by mining console logs. In: SOSP ’09: Proceedings of the ACM SIGOPS 22nd
symposium on Operating systems principles, pp. 117-132. ACM, Big Sky, Montana,
USA (2009)

Yuan, D., Park, S., Zhou, Y.: Characterizing logging practices in open-source software.
In: ICSE 2012: Proceedings of the 2012 International Conference on Software Engineer-
ing, ICSE 2012, pp. 102-112. IEEE Press, Piscataway, NJ, USA (2012)

Yuan, D., Zheng, J., Park, S., Zhou, Y., Savage, S.: Improving software diagnosability
via log enhancement. In: ASPLOS ’11: Proceedings of the 16th international conference
on Architectural support for programming languages and operating systems, pp. 3—14.
ACM, Newport Beach, CA, USA (2011)

Zhang, F., Khomh, F., Zou, Y., Hassan, A.E.: An empirical study of the effect of file
editing patterns on software quality. In: WCRE ’12: Proceedings of the 2012 19th
Working Conference on Reverse Engineering, pp. 456-465. IEEE Computer Society,
Washington, DC, USA (2012)

Zimmermann, T., Nagappan, N.: Predicting defects using network analysis on depen-
dency graphs. In: ICSE ’08: Proceedings of the 30th international conference on Software
engineering, pp. 531-540. ACM, New York, NY, USA (2008)

Zimmermann, T., Nagappan, N., Williams, L.: Searching for a needle in a haystack:
Predicting security vulnerabilities for windows vista. In: Proceedings of the 2010 Third
International Conference on Software Testing, Verification and Validation, ICST ’10,
pp. 421-428 (2010)

Zimmermann, T., Premraj, R., Zeller, A.: Predicting defects for eclipse. In: PROMISE
’07: Proc. of the 3rd Int. Workshop on Predictor Models in Software Engineering, pp.
9-15. IEEE, Washington, DC, USA (2007)

27

