
Understanding Reuse in the Android Market
Israel J. Mojica Ruiz∗, Meiyappan Nagappan∗, Bram Adams†, Ahmed E. Hassan∗

∗Software Analysis and Intelligence Lab (SAIL) †Maintenance, Construction and Intelligence Lab (MCIS)
Queen’s University, Kingston, Canada École Polytechnique de Montréal, Canada

Email: mojica, mei, ahmed@cs.queensu.ca Email: bram.adams@polymtl.ca

Abstract—Mobile apps are software products developed to run
on mobile devices, and are typically distributed via app stores.
The mobile app market is estimated to be worth billions of
dollars, with more than hundred of thousands of apps, and
still increasing in number. This explosion of mobile apps is
astonishing, given the short time span that they have been around.
One possible explanation for this explosion could be the practice
of software reuse. Yet, no research has studied such practice in
mobile app development. In this paper, we intend to analyze
software reuse in the Android mobile app market along two
dimensions: (a) reuse by inheritance, and (b) class reuse. Since
app stores only distribute the byte code of the mobile apps, and
not the source code, we used the concept of Software Bertillonage
to track code across mobile apps. A case study on thousands
of mobile apps across five different categories in the Android
Market shows that almost 23% of the classes inherit from a base
class in the Android API, and 27% of the classes inherit from
a domain specific base class. Furthermore, on average 61% of
all classes in each category of mobile apps occur in two or more
apps, and 217 mobile apps are reused completely by another
mobile app in the same category.

I. INTRODUCTION

Mobile apps are applications developed to run on mobile
devices. These mobile apps are available commonly through
app stores maintained by platform developers such as Apple,
Google, Microsoft, or Research in Motion. Today, there are
hundreds of thousands of mobile apps across various app
stores, and this number has been increasing exponentially
since Apple opened the first app store in 2008. There is no
decrease anticipated in the rate of growth of the mobile apps
market [1] [2]. For example, the Android Market started with
2,300 apps in March 2009, and the last update, in January
of 2012, indicates that there are currently more than 380,000
apps available [3].

There are various potential reasons for this current explosion
in the number of available mobile apps. One of them could
be the large increase in the number of developers for these
platforms [4], as well as the availability of decentralized
mobile apps stores [5], or the ease of building new apps [6],
which attracts many new developers to develop an app. A more
fundamental reason why so many mobile apps are developed,
might be the use of proven software engineering practices,
such as code reuse [7] [8]. Such practices have been analyzed
in depth on desktop and server software systems [7] [8] [9]
[10], and these principles form the core of any university
degree on software engineering. Given the low threshold for
entering the mobile app market, it is not clear how such
practices are being followed for mobile app development.

This paper analyzes the adoption of code reuse for mobile
app development. Frakes and Kang define software reuse as
“the use of existing software or software knowledge to con-
struct new software” [9]. Research has shown that the judicious
usage of code reuse tends to build more reliable systems
and reduce the budget of the total development [7] [8] [9].
Various types of software reuse exists, like inheritance, code,
and framework reuse [10], each having its own advantages and
disadvantages.

In this paper we focus on exploring the extent of reuse
among mobile apps. In order to comprehend the software
reuse in the Android Market, we make use of the Software
Bertillonage technique introduced by Davies et al. [11], be-
cause the app stores only distribute the bytecode of the mobile
apps, and not the source code. Software Bertillonage generates
a class signature from each class’s bytecode, then compares
these signatures across different apps.

We focused our study on the apps available in the Android
Market [12] since mobile devices running the Android OS
together have approximately 48% of the market of smartphone
devices in US [13], and approximately 68% in China [14] to
date. In order to explore the adoption of reuse by mobile app
developers, we conduct a case study on five different categories
of apps in the Android Market (Cards & Casino, Personal-
ization, Photography, Social and Weather). In particular, we
analyze the mobile apps for reuse along the following two
research questions:

• RQ1: What fraction of the classes reuse code by
inheritance?
We found that almost 27% of the classes in the thousands
of mobile apps in our case study inherit from a domain
specific base class. 23% of the classes inherit from
Android-specific base classes. Furthermore, nine of the
top ten base classes are from the Android API.

• RQ2: How often do mobile apps reuse classes from
other apps?
We found that on average 61% of the total number of
classes in each category occurs in two or more mobile
apps. The classes most often reused are the Ads classes
provided by Google. Most of the classes reused are
from third party developers like Apache and Google.
Furthermore, 217 mobile apps have the exact same set
of classes as another mobile app in the same category.

This paper is organized as follows: Section II describes
the study design. Section III presents the results of our case

study and discusses our findings. Section IV presents a detailed
discussion on a special case of reuse. Section V outlines the
threats to validity, and Section VI presents the related work.
Finally, Section VII concludes the paper.

II. STUDY DESIGN

In this section we present the subject systems in our study
as well as the approach we followed to extract the required
data for our study (Fig. 1).

A. Subject Systems

Since the Android operating system has the highest market
share among other competing mobile operating systems [13]
[14], we analyzed apps from the Android Market. In the
Android Market, it is estimated that two-thirds of all the
available mobile apps are free (as in “no cost”) [3]. Hence, we
limited the apps in our case study to only the free ones. The
Android Market categorizes the applications under 34 different
categories (including 8 Games-subcategories). Across these
34 categories there are more than 380,000 mobile apps [3].
Since app stores including the Android Market do not provide
an interface for mass download of mobile apps, we had to
manually download them. Hence, we restricted our study to
just five categories.

The five studied categories are: Cards and Casino, Person-
alization, Photography, Social, and Weather. We selected these
five categories because we expected to find a higher proportion
of reuse in them in comparison with the rest of categories,
given us a best case scenario. For example, the category of
Photography focuses only on two kinds of apps in particular:
apps to take pictures in devices with camera, and apps to show
a collection of pictures. Another example is the category of
Weather apps, which focuses on apps of weather forecasting.
We felt that the similarity and simplicity of the goals of these
apps will very likely lead to a large amount of reuse between
them.

B. Data Extraction

Each mobile app in the Android Market is packaged as an
Android Package file (APK). In this subsection, we explain
the process that we use to extract the Java Archive file (Jar)
from the APKs, i.e., the first three steps in Fig. 1.

1. Download APK: We manually downloaded every appli-
cation in the selected categories from the Android Market, onto
an actual Android device. For the five categories under study,
we selected every single free application. To the best of our
knowledge, there is no information available about how many
mobile apps exists for each category in the Android Market.
Hence, we continued downloading different mobile apps until
no additional apps could be found anymore.

2. Backup APK: We backed up the applications from the
Android device to our server with the help of a tool called the
Astro File Manager [15]. However, the Astro File Manager
was not able to backup mobile apps that were marked as
private apps, which are mobile apps that were copy protected

TABLE I
SET OF ANDROID APPLICATIONS UNDER ANALYSIS

Category Number of applications under study
Cards and Casino 501

Personalization 1,115
Photography 1,034

Social 1,119
Weather 554

[16]. Table I shows the total number of APKs1 that we were
able to backup to our server using the Astro File Manager.

The process of downloading and backing up the apps
required approximately 100 hours.

3. Extract Jar from APK: Since an APK is an Android
specific format, we had to extract the Java bytecode (a regular
Java Jar archive) from it. We used an existing tool, dex2jar
[17], to perform this operation. We had to modify the names
of some APKs in our case study because they made use of
special characters that dex2jar was not able to interpret (e.g.,
Chinese characters).

C. Class Signature Extraction

We used the Software Bertillonage [11] technique to analyze
the mobile apps for software reuse. We chose this technique
instead of a code clone detection technique, because the
Android app store (like any app store) does not provide access
to the source code of the mobile apps, only the bytecode.
Furthermore, we did not know beforehand the kinds of reuse
applied by mobile apps, i.e., whether developers literally
cloned whole classes or rather heavily customize the cloned
code. A more lightweight technique like software bertillonage
is designed to work with this kind of uncertainty. Below, we
briefly explain the Software Bertillonage technique, and how
we use it to extract the class signatures for our analysis. This
is the fourth step in Fig. 1.

4. Generate class signatures: Davies et al. [11] proposed
a technique called Software Bertillonage in order to identify
the origin (the provenance) of a Jar file in a set of Jar
files. Software Bertillonage generates a class signature for
each class contained in a Jar file. Then, the class signatures
are compared across Jar archives to find similar Jar archives
through signature matching.

We developed a tool to obtain the class signatures from the
Jar archives of the mobile apps based on a slightly modified
version of Software Bertillonage, which we explain below.
A class signature typically includes the fully qualified name
(name of the class along with the package that it is in) of
a Java class. The fully qualified name is chosen to avoid that
two different classes, in two different packages, that by chance
have the same name, have the same signatures. However, it is
important to note that if developers copy and paste code, and
alter the namespace of the original class, Software Bertillonage
will not be able to build the same signature. Despite these
limitations, Software Bertillonage is an intuitive technique for

1List of apps used: http://sailhome.cs.queensu.ca/replication/ICPC2012/

Android
Market

APK Jar files Generate class
signatures

Database of class
signatures

Data extraction:

1.  Download APK to Android device

2.  Transfer APK to the server

3.  Extract bytecode from APK

Class signatures

Fig. 1. Steps for the generation of class signatures from mobile apps in the Android Market.

package	 p.s;	
	
public	 class	 ClassName	 extends	 j.l.E	 implements	 x.y.Z{	

	 	
	 	 	 	 	 public	 C(){	

	 //Class'	 constructor	
	 	 	 	 	 } 	 	
	 	 	 	 	 syncronized	 static	 int	 a(java.lang.String	 s)	 throws	

	 pack.subPackage.K{	
	 	 	 	 	 /*[compiled	 byte	 code]*/	
	 	 	 	 	 } 	 	
}

 sClass = public class p.s.ClassName extends E implements Z
 sM1 = public C()
 sM2 = default synchronized static int a(String) throws K
 Bertillonage class signature = <sClass,<sM1,sM2>>

Fig. 2. Decompiled Java class, Class and Method lines, and Class Signature

our purposes, since it is lightweight and only requires the
bytecode to work.

Class signature example: In Fig. 2 we show a decompiled
version of a class (ClassName) and its corresponding class
signature on the right. A class signature consists of a sClass
with the sM of each method in the class. The first step of
our algorithm produces the sClass, which is composed of
the package name and class name. The second step produces
a sorted set of method signatures sM1 and sM2 (one for
each method). This set of method signatures form the second
component of the class signature. Note that if the method is
neither public, nor private, nor protected, default will be added
for visibility.

The three steps in the algorithm are:

(a) Extract the package and class line.
(b) Extract and sort the methods in alphabetical order.
(c) Remove methods introduced to implement non-generic

interfaces.

In step (b), Davies et al. did not sort the methods. However,
to avoid that two classes are identical except for the order of
their methods are not recognized to be identical, we decided
to sort the methods in alphabetical order.

The above algorithm is repeated for each class contained in
each Jar file. The result of the execution of this algorithm is
a set of class signatures. We refer the reader to the original
paper [11] for further details about this algorithm.

We implemented a tool that applies this Software Bertillon-
age technique with slight modifications, in order to identify
the software reuse among a set of mobile apps in the Android
Market. The tool was developed using bcel-5.2 [18], the
Apache library Davies et al. [11] used to analyzed Java binary
files.

TABLE II
SET OF CLASS SIGNATURES BY CATEGORY

Category Total Number of Class
Signatures

Mean Median

Cards and Casino 59,208 118 65
Personalization 52,425 47 11

Photography 88,156 85 26
Social 250,063 223 93

Weather 84,205 152 45

D. Database of Class Signatures

The set of class signatures generated from the jar files of
the mobile apps using the above steps was stored in a database
for our analysis. During the analysis, we found a list of classes
named with a single letter (e.g. a, b, c). It was unclear whether
these classes were introduced by the developers (as we do
not have the source code), or by the compiler. Consequently,
we chose to omit classes named with a single letter, since
we could not decipher the purpose of these classes from their
name. Furthermore, in Android apps developers write an XML
file that is compiled into a class called R (Resource) in the
APK. This class is present in all Android apps that have a user
interface. Hence, we decided to omit this class in our analysis.

The total number of class signatures for each category is
shown in Table II. Additionally, the mean and the median of
the number of class signatures per app are also shown in Table
II for each category. As we can see in Table II, the median
number of class signatures per app in Personalization was just
11 while the median number of class signatures in the Social
category was almost eight times as much. This shows that
the 5 categories each provide a slightly different view about
mobile apps.

III. CASE STUDY

The goal of our study is to analyze and understand reuse in
the mobile apps of the Android Market. Software bertillonage
allows us to study two dimensions of reuse: inheritance level
reuse, and class level reuse. This section presents the approach
and results of our case study for the two research questions.

A. RQ1: What fraction of the classes reuse code by inheri-
tance?

Motivation: In this research question, we want to analyze
the extent of inheritance present in mobile apps of the Android
Market [12]. Prior research has shown several advantages
(improved conceptual modeling) [19] and disadvantages (tight
coupling to base class) [20] of inheritance in OO program-
ming. By identifying which base classes are inherited more
often, the developers can allocate appropriate resources to
make them more reliable, efficient and modular. Hence, in
this research question we want to determine:
(a) What proportion of classes in each category inherit a base

class?
(b) What are the top base classes that are inherited?

Approach: In Java, all classes inherit at least from the
Object class. Hence, in order to answer question (a), we
removed from our set of signatures all those classes that are
just inheriting from the Object class (for example public class
package.ClassName extends Object). However, we decided to
keep any other class, such as Enum or Exception, because
the developers explicitly have to code the inheritance from
these classes. We used the package name of the base class
to identify if it was part of the platform (Android API) or a
domain specific package.

In order to answer question (b) we need to determine the
base class in each class signature. To determine the base
class, we mined the class signature for the base class by
searching for the keyword ‘extends’. An example of a class
line of a class signature is:

public class com.google.ads.AdView extends RelativeLayout

Therefore the AdView class reuses via inheritance the Rela-
tiveLayout base class that is part of the android.widget pack-
age. Then, we grouped identical base classes, and calculated
the frequency of them. In the results, we will present the top
ten base classes in the five categories of Android apps under
analysis.

Results: (a) Table III shows the percentage of classes in
each category that inherit from the platform base classes and
non-platform base classes. Overall, about 50% of classes in
each category inherits from a base class. In two of the five
categories, the classes in the mobile apps inherit more from the
platform base classes, and in two other categories they inherit
more from the non-platform domain specific base classes.

(b) On investigating which base classes were inherited the
most we found that the “Activity” class in the Android API
is the most popular with about 24,266 of the class signatures
(across the five categories) inheriting from it. The other base

TABLE III
INHERITANCE BY CATEGORY (PERCENTAGES CALCULATED WITH

RESPECT TO THE TOTAL NUMBER OF CLASSES THAT INHERIT A BASE
CLASS IN THE MOBILE APPS OF A SPECIFIC CATEGORY)

Category Percentage of
base classes from
the Android API

Percentage of base
classes from other

domain specific classes
Cards and Casino 21% 29%

Personalization 29% 26%
Photography 29% 19%

Social 19% 31%
Weather 25% 25%

TABLE IV
TOP 10 BASE CLASSES (PERCENTAGES CALCULATED WITH RESPECT TO
THE TOTAL NUMBER OF CLASSES THAT INHERIT A BASE CLASS IN THE

MOBILE APPS ACROSS ALL FIVE CATEGORY)

Class name Percentage of classes that
inherit from the base class

android.app.Activity 9.1%
java.lang.Enum 3.4%

android.content.BroadcastReceiver 2.6%
android.widget.RelativeLayout 2.3%

java.lang.Exception 1.6%
android.widget.BaseAdapter 1.2%

java.lang.Thread 1.1%
android.os.AsyncTask 0.9%

android.os.LinearLayout 0.8%
org.apache.james.mime4j.field.

address.parser.SimpleNode 0.8%

classes in the top 10 most frequently inherited base classes
are in Table IV. The second column of the table presents
the percentage of classes (total classes that inherit = 266,782)
across the five categories that inherit the particular base class.
Nine of the ten classes are provided by Google as part
of the Android API. The SimpleNode class was from the
org.apache.james.mime4j package.

Since it can be expected that mobile apps inherit from plat-
form classes, we also examined the top 10 non-Android API
base classes that were inherited. The ranks of the top 10 third
party base classes, in the global ranking of base classes, ranged
from 10 to 42. The other base classes between ranks 10 and
42 were all from Android. Even among the top 10 third party
base classes in Table V, only one (WxFrameworkException by
WSI), was from a closed source API. Thus, we were able to
identify that most classes in mobile apps inherit, when they do
so, from base classes that are available in open source freely
available APIs.

Discussion: Prior research looked at the extent of reuse
via inheritance in four open source Java projects (JHotDraw,
Log4J, ArgoUML, and Azureus) [21]. The results from this
research shows that the percentage of classes that inherit
from base classes are between 29 and 36% (in ArgoUML
and JHotDraw respectively). In comparison, the percentage of
reuse via inheritance in each category of mobile apps under
study is about 50%.

TABLE V
TOP 10 BASE CLASSES THAT ARE NOT PART OF THE ANDROID API

(PERCENTAGES CALCULATED WITH RESPECT TO THE TOTAL NUMBER OF
CLASSES THAT INHERIT A BASE CLASS IN THE MOBILE APPS ACROSS ALL

FIVE CATEGORY)

Class name Percentage of classes
that inherit from the

base class
org.apache.james.mime4j.field.address.

parser.SimpleNode 0.77%

com.adwhirl.adapters.AdWhirlAdapter 0.65%
org.apache.http.entity.mime.content.

AbstractContentBody 0.44%
org.apache.james.mime4j.field.

AbstractField
0.43%

com.wsi.android.framework.wxdata.
exceptions.WxFrameworkException 0.39%

org.apache.james.mime4j.field.
ParseException 0.38%

org.jivesoftware.smack.packet.IQ 0.36%
gnu.expr.ModuleBody 0.35%

com.qq.taf.jce.JceStruct 0.34%
com.wsi.android.framework.wxdata.
exceptions.WxFrameworkException 0.33%

B. RQ2: How often does a class from a mobile app gets reused
in another app?

Motivation: This question tries to gain a better understand-
ing into types of classes that are being reused across mobile
apps. By identifying classes that are reused often (similar to
operational profiling), the developers of such classes will be
able to allocate appropriate resources to make these classes
more reliable and efficient. Hence, in this question we want
to determine:
(a) What is the proportion of classes in each category that are

reused at least once, i.e., occur in two or more apps?
(b) What is the proportion of classes in each app that are

reused in at least one of the remaining apps in the same
category?

Approach: In this research question, we used the technique of
signature matching proposed by Davies et al. [11] to identify
reuse of class signatures across the mobile apps in each
category. In order to answer question (a), for each category,
we calculated the proportion of class signatures that occurs
in two or more apps. We took this proportion’s complement
to obtain the Proportion of Class Signatures Reused (PCSR):

PCSR = 1− Total Number of Unique Class Signatures

Total Number of Class Signatures

A high value for the PCSR indicates that the reuse of class
signatures is high in that category.

Question (b): The PCSR is only a measure of reuse of class
signatures among all mobile apps of a particular category.
Question (b) wonders what happens with the occurrence of
the class signatures at the app level, i.e., what percentage of
class signatures in each mobile app occurs in other mobile
apps of the same category. In order to answer this question,
we used another measure called “Global Reuse” denoted as
Global(A), for a particular mobile app A. Global(A) is the
proportion of class signatures found in a mobile app A that

Casino Person Photo Social Weather

Category

Pe
rc

en
ta

ge
 o

f S
ig

na
tu

re
s

R
eu

se
d

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

53% 71% 59% 54% 68%

Fig. 3. Proportion of Class Signatures reused per category

are also found in at least one other app in the same category
as A. We define Global Reuse in a mobile app as:

global(A) =
|s(A) ∩ s(Ā)|
|s(A)|

Where: A = Current mobile app under consideration.
Ā = The apps other than A, in the same category as A.
s(A) = Set of class signatures in A.
s(Ā) = Set of class signatures in Ā.

When Global(A) = 1, it means that every class signature in
A occurs in at least one other mobile app in the same category
(not necessarily all in the same mobile app). When Global(A)
= 0, it means that no class signature in the mobile app A occurs
in any other mobile app in the same category. Therefore, using
this measure we are able to identify the commonly used class
signatures in each mobile app and the extent to which they
are reused.

Results: (a) Fig. 3 shows the Proportion of Class Signa-
tures Reused for each category. Our results indicate that on
average 61% of class signatures of a category are reused
signatures. This high percentage of reuse indicates that very
few classes are unique to a mobile app. We also observe
that the Personalization category has the highest proportion
of class signatures that was reused, followed by Weather and
Photography. Social, and Cards & Casino have the lowest
proportion of class signatures that was reused.

(b) In order to analyze the distribution of class signatures
among individual mobile apps in each category we calculated
the Global Reuse of each app in all the five categories. We
plotted the cumulative values of Global Reuse per app in Fig.
4. The x-axis in Fig. 4 is the percentage of classes in each app
that are reused in another mobile app in the same category.

Global Reuse

Pe
rc

en
ta

ge
 o

f A
pp

s
fo

r e
ac

h
C

at
eg

or
y

1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0

0

20

40

60

80

100
Casino
Personalization
Photography
Social
Weather

Fig. 4. Cumulative Global Reuse per app among the different apps in each
category.

The y-axis denotes the percentage of apps (cumulative) in each
category that has a particular value of Global Reuse. Each
category has its own step function in Fig. 4. We grouped all
the apps in ten intervals of Global Reuse with each interval
having a width of 10%. That is, all the mobile apps in the
category with Global Reuse in the interval [1, 0.9) are grouped
together in one group. All the mobile apps with Global Reuse
in the interval [0.9, 0.8) are grouped together in another group,
and so on.

Fig. 4 shows that Personalization has the highest percentage
of apps with Global Reuse = 1, that is every class signature in
these mobile apps occurs at least in one other mobile app in the
Personalization category. The Weather category has the lowest
number of mobile apps with Global Reuse =1. However, at the
same time Personalization has the highest percentage of apps
with Global Reuse = 0, while Photography is the category with
lowest percentage of apps with Global Reuse = 0.

Discussion: Prior research on identifying reuse in open
source projects, found that 49% of the analyzed projects
(38,700), had at least 80% of their files in common with other
projects [22]. From Fig. 4, we can also observe that anywhere
between 20 to 40 % of the mobile apps in each category have
80% or more class signatures that occurs in another mobile
app of the same category. However, at 30% code reuse, prior
research shows that only 53% of the files were in common. In
the case of mobile apps, between 50 and 80% of them have
at least 30% of classes in common.

To better understand the reasons for reuse, we took a closer
look at the class signatures that were found in two or more
apps. First we extracted the name of their Project/Organization
from the fully qualified name of the class in the class signature.
The top ten projects/organizations are presented in Table VI.

TABLE VI
TOP 10 PROJECTS/ORGANIZATIONS

Project /
organization

name

Number of unique
classes in the

project/organization

Total number of reused
classes from the

project/organization
Apache 4,370 86,489
Google 4,821 39,973

Wsi 311 21,205
Anddev 1,162 20,716
twitter4j 1,363 10,781

Gnu 700 10,220
Android 1,117 7,580
Admob 426 7,023

Jivesoftware 716 6,355
Millenialmedia 388 6,140

We noticed that some of the classes have behind a commu-
nity of developers providing many open source libraries (for
example: Apache, Anddev). Only one of them (Wsi) was a
company that did not provide its code as open source. From
column three we can see that the libraries from the Apache
community, are reused the most. We can also see that these
ten developers (in Table VI) account for 216,482 of the class
signatures (almost 50% of the total class signatures across the
five categories under study). However, from column two we
can identify that most of the unique classes come from the
libraries in Google Code.

The high number of Google packages reused are part of
Google AdMob Ads API (com.google.ads). The purpose of
this package is to add a banner on top of the apps [23]. The
second popular package by Google is part of Google Analytics
API (com.google.android.apps.analytics). The objective of this
package is to provide an API for collecting information about
the use of mobile apps. [24].

In the case of Apache, its most popular package in reuse
in the Android apps is its package to support the MIME
protocol (org.apache.http.entity.mime) [25]. The second most
popular package from Apache is the Apache James Mime4J
(org.apache.james.mime4j). The main purpose of this package
is to proportion a parser for e-mail message streams, in two
different formats: plain rfc822 and MIME format [26].

WSI is a company that focus on the commercialization of
weather forecast [27]. The WSI packages most reused are
com.wsi.android.framework.wxdata.tiles.TileDownload and
com.wsi.android.framework.wxdata.geodata.controller.GeoDat
aCollectionUpdater.

Next, we wanted to identify the top five classes that were
reused. Table VII shows that the AdSize class from Google
is the most popular class. It was used in 1,525 apps across
the five categories of apps under study. All five of the top five
class signatures are from the ads package. The reason for this
is the business model used by mobile app vendors. Typically,
the free version of an app contains less functionality or shows
advertisements. To enable the latter, apps make use of existing
ad libraries. Some of the other non-Google classes that were
reused often were the ads class from the AirPush API [28],
and classes from the Facebook API.

TABLE VII
TOP FIVE CLASSES ACROSS THE 5 CATEGORIES OF MOBILE APPS

Class name Number of apps used in
com.google.ads.AdSize 1,525

com.google.ads.AdRequest 1,280
com.google.ads.InstallReceiver 1,280
com.google.ads.InterstitialAd 8,29
com.google.ads.util.AdUtil 7,27

TABLE VIII
TOP 6 PURPOSES OF THE CLASSES

Tag/Purpose Number of classes
Util 33
UI 25

Image 24
Network 24

Ads 22
I/O 22

Finally, we wanted to determine the purpose of the most
reused classes whose signatures were reused so often. Hence,
we decided to qualitatively analyze the classes based on their
class signatures. Since we could not manually tag all 190K
classes, we picked a statistically valid random sample with
a confidence level of 95% and a confidence interval of 5%.
For this, we had to randomly choose 383 signatures. We then
manually tagged each class with the purpose of the class. This
tagging was based on the name of the class, the package it
was in, the classes that it extended, and the interfaces that
it implemented. Then we aggregated these tags according to
their purpose.

As can be seen in Table VIII, of the sample of 383 classes,
33 of them (10+-5%) were Utility classes. The other tags in the
top 5 positions are classes for user interface, image handling,
network, advertisements, and input/output.

An example of a highly reused Util class is
org.anddev.andengine.util. The main goal of this package
is to provide libraries for developing videogames in
Android [29]. One of the most reused classes of UI is
com.wsi.android.framework.ui.overlay.item.GeoObjectOverlay
Item by WSI [27]. For the purpose
of Image we can mention the class
org.anddev.andengine.opengl.texture.atlas.bitmap.source.Inter
nalStorageFileBitmapTextureAtlasSource by AndEngine
[29]. In Network, the most reused class is
org.apache.http.conn.params.ConnRouteParams. This class is
part of the HttpComponents package that provides support for
the HTTP protocol [30]. In the Ads category, we identified
com.admarvel.android.ads.AdMarvelAnalyticsEvents
developed by AdMarvel [31]. Finally, for I/O,
Apache proportions libraries as part of its project
Commons IO. One of these classes identified is
org.apache.commons.io.output.ByteArrayOutputStream,
this is an alternative implementation of the standard
java.io.ByteArrayOutputStream class [32].

IV. DISCUSSION

In the second research question (Fig 4) we identified mobile
apps that have Global Reuse = 1, i.e., every class signature in
the mobile app is present in another mobile app in the same
category. This is a special case of reuse, since the mobile apps
that we studied are end user mobile apps and not just libraries
that are intended for reuse. To better understand this special
case of reusing classes, we performed additional analysis of
this subset of mobile apps. Hence, in this analysis we want to
determine:
(a) How many pairs of mobile apps have identical set of

classes?
(b) Who are the developers of such mobile apps?

Motivation: In cases where two or more mobile apps have
an identical set of signatures, it is possible that a common
framework of classes is being used, especially since the
final products are different in terms of their look and feel
or purpose. Cardino et al. suggest the various advantages
and disadvantages of framework reuse [33]. They show that
reusing a set of classes can increase productivity. However,
the cost of building and adapting a framework can be very
expensive. Since there is no current research that discusses
the extent of framework reuse in mobile apps, we intend to
study this type of reuse. Also, since the mobile apps that we
are considering in this section are identical to each other with
respect to the set of signatures, we wonder if the reuse is done
by the same developer or different developers.

Approach: In order to answer question (a), we introduce a
new measure called Local Reuse of a mobile app, denoted as
local(A,B), in each category. For a pair of mobile apps A and
B, Local Reuse is the proportion of class signatures found in
a A, that also occur in B. Unlike Global Reuse, we performed
a pair wise comparison of mobile apps to determine Local
Reuse, which is defined as:

local(A,B) =
|s(A) ∩ s(B)|
|s(A)|

A high value of Local Reuse means that a high number of
class signatures are being reused in another app. Since Local
Reuse is calculated for every pair wise combination of mobile
apps, we only considered the largest value of Local Reuse for
each mobile app.

Note that we only consider pairs of apps that both have
Local Reuse = 1 to address question (a). This means that both
mobile apps have the same number of classes and each class
signature in one mobile app is identical to a signature in the
other mobile app.

In order to answer question (b), we looked for the devel-
opers of those applications with at least one Local Reuse =
1 in the Android Market. In order to find the mobile app in
the Android Market we had to first look for the application
package information contained in the AndroidManifest.xml
file in each APK. We extracted the AndroidManifest.xml from
the APK for every mobile app with Local Reuse = 1, using
the apktool [34]. We looked for the package information in the

AndroidManifest.xml file, and we used it to locate the mobile
app in the Android Market (thus, the developer).

Results: The results for questions (a) and (b) are presented
in Table IX. We were able to find different subsets of apps
with Local Reuse = 1, i.e, sets of mobile apps that were all
identical to each other. We present the total number of subsets
in each category in column two of Table IX. We also present
the number of mobile apps present in each subset, along with
the number of signatures in each of them. On the whole, there
were 48 sets of mobile apps that had the same set of class
signatures. These 48 sets amounted to 217 (5% of total mobile
apps studied) individual mobile apps across the five categories.
We notice from Table IX that the Photography category has the
largest number of subsets, namely 18. Also the same category
has the most number of mobile apps that have a Local Reuse
= 1, namely 70.

For question (b), we found that in 42 out of the 48 sets, all
the mobile apps were developed by the same developer. In the
other six subsets, different developers built mobile apps that
were identical to each other. Most of these cases were found
in the social category.

Discussion: Although, out of the 4,323 mobile apps, only
217 of them were identical to at least one other mobile
app, this is a significant number. We found that three of
the six sets of apps that were developed by more than one
developer (organization), were from companies that provide
mobile solutions to other companies. For example, Forum
Runner [35] develops and commercializes libraries to manage
a forum within a mobile app. They publish apps in the Android
Market for different commercial sectors. Other companies
in this category use their libraries to generate apps. The
remaining three sets of apps were built from sets of open
source libraries (from Apache and twitter4j).

Furthermore, even in the 42 sets of mobile apps that
were each developed by a single developer, we found that
a framework was used. For example in the weather category,
there were 11 mobile apps with the same set of class signatures
that were all developed by the same developer. When we
looked at the actual mobile app in the Android Market, we
found that each app basically was the same weather app, but
for different metropolitan cities in Europe. Since we know
that the developer used the same set of class signatures and
that the apps look the same, we can infer that the source
code was changed minimally. We think that the change could
be the weather service that is called to get the data for the
corresponding cities.

Hence, in mobile apps that are identical to another mobile
app, it seems like one of the following three types of frame-
works is used: (a) private closed source owned by companies
for their own purposes, or (b) private closed source owned by
companies to develop solutions for their clients, or (c) public
open source collection of libraries.

V. THREATS TO VALIDITY

This section discusses the main threats to validity that can
affect the study we performed.

A. Internal Validity

The total number of mobile apps under analysis represents a
confidence level of more than 99% with a confidence interval
of 2%, based on the last report of the total number of apps
available in the Android Market. This limited subset of mobile
apps was used instead of the whole set, since each app had
to be manually downloaded. To back up of mobile apps, we
used the widely popular tool Astro File Manager. We could
not get applications marked as private apps by the Astro File
Manager.

Our tool to generate class signatures made use of bcel-5.2,
the same library used by Davies et al. [11]. Also, we made
use of popular open source tools like dex2jar and apktool. We
had to discard class files named with just one letter (e.g. a, b,
c) because we could not decipher the purpose of these classes
from their name. Also, we excluded mobile applications with
Global Reuse = 1 that had in total one class signature.

B. External Validity

Our study analyzes free (as in “no cost”) mobile apps in five
different categories of the Android Market. Some developers
may have uploaded their applications in the wrong category
(i.e., an app that displays a snow city theme in the category
of Weather).

To find out if our results apply to other app stores and
mobile platforms, we need to perform additional studies on
those environments. Also, in order to generalize our results,
we require an analysis of a more extended number of apps
across all categories available in the store.

C. Construct Validity

Our results are based on a modified version of the Software
Bertillonage algorithm, and the Global and Local Reuse met-
rics. The modifications were made to identify the cases where
the developer modifies the order in which the methods are
declared in the class that is being reused. Also, Local Reuse
is the same metric used in [11] (Inclusion Index), while Global
Reuse is a complementary metric of Local Reuse.

VI. RELATED WORK

In this section, we discuss related work about Software
Bertillonage, OO reuse, Clone detection and research done
on APK files.

A. Software Bertillonage

Davies et al. [11] created a technique named Software
Bertillonage to find the origin (provenance) of a set of 51
Jar files compared to the public repository of 130,000 Jar files
provided by Maven2. We used the same technique to look for
patterns that pointed to software reuse among a set of Android
apps.

TABLE IX
NUMBER OF SETS OF MOBILE APPS WITH IDENTICAL CLASS SIGNATURES AND THEIR DEVELOPER INFORMATION

Category # subsets in which mobile
apps are identical

mobile apps across all
subsets

sets in which all apps
have same developer

sets in which all apps do
not have same developer

Cards and Casino 4 13 3 1
Personalization 14 56 13 1

Photography 18 70 17 1
Social 8 57 5 3

Weather 4 21 4 0

B. OO reuse

Conte et al. [37] analyzed the workload of java applications.
They collected Java applications on the Internet between 1997
and 1998. They analyzed the workload of these applications
based on code reuse at the program, class, and method level.
In contrast, we analyzed the inheritance and class level reuse
of Android applications.

Mockus pointed out the lack of any work that quantified
code reuse in open source software outside the area of code
clones. He quantified and identified code reuse in a large
set of large open source projects, such as different Linux
distributions [22]. In our study, however, we analyzed closed
source, mobile applications of the Android Market.

Michail built a tool named CodeWeb to analyze the use of
library reuse on source code through data mining [38] [39].
Besides library reuse, we looked for inheritance reuse. Our
goal was to analyze and measure OO reuse on a large and
popular mobile app store.

Denier et al. presented a model through which they analyzed
the base classes, and classified these classes depending on
the number of methods [21]. While they concentrated their
efforts in presenting a model for the understanding of the
inheritance within a large software product, we have analyzed
and quantified the reuse by inheritance among a large set of
mobile apps.

Heinemann et al. analyzed 20 different projects in order to
discover the extent of reuse among open source Java projects.
They classified the type of reuse in two categories: white-box
reuse, the type of reuse that includes the source code; and
black-box reuse, the one that reuse software in binary form
[40]. In contrast, we studied a larger number of clouse-source
(but free) mobile apps, in order to discover the reuse along
two dimensions: inheritance and class reuse.

C. Clone Detection

Roy et al. presented a study of identifying function clones in
open source software through the use of the NICAD tool [41].
Kapser et al. classified code clones in three groups (forking,
templating, and customization) [42]. Hemel et al. used binary
clone detection in order to find software license violations [43].
Similarly, our focus in this paper is to identify software reuse,
instead of identifying new clone detection techniques. We used
Software Bertillonage instead of clone detection techniques
since the app stores do not give access to the source code.
Decompiling the bytecode for the full source code is not
as accurate as decompiling to only get the class signatures.

Hence, we chose the more accurate and lightweight Software
Bertillonage technique.

D. Research on Android Packages (APK) files

To the best of our knowledge, Shabtai et al. [44] have
been the first researchers to conduct a formal study on APK
files. They applied Machine Learning techniques to features
extracted from Android applications in order to classify two
types of Android apps: tools and games. While they sought to
identify common features in Android applications, the present
study measures and analyzes the different levels of reuse in
the Android Market.

Syer et al. compared the source code of mobile apps
available for the Android and BlackBerry platforms [45].
They conducted their research on three open source projects
available in both platforms. They focus their research on
the comparison of size and churn of the code base and the
dependency of the code on the platform. In our research, we
have conducted a study in a larger set of closed source Android
mobile apps, in order to analyze reuse by inheritance and reuse
of classes.

VII. CONCLUSION

This paper analyzed Android applications to identify the
amount of code reuse in them. We employed several tech-
niques based on the concept of Software Bertillonage to find
patterns that indicate how frequently software is reused among
all the apps, either via inheritance or via class reuse.

In summary, we found that almost 50% of the classes in the
mobile apps of the five categories under study inherit from a
base class. We found that most of the base classes that are
reused were from the Android API or a third party API.

Additionally, we identified that on average 61% of the
classes in each category under study appears in two or more
apps of that category. We also found that 20-40% of the ap-
plications had 80% or more of their class signatures in at least
one other mobile app in the same category. We found that the
top classes are those that handle notifications of advertisements
and that more than half of the classes that were found in two
or more apps were from just ten projects/organizations. In our
qualitative analysis, we identified that the top purpose of these
classes were Util classes.

In conclusion, our study provides an initial insight into
the development practices of mobile apps. We conclude that
software reuse is prevalent (compared to regular open source
software) in mobile apps of the Android Market. Developers

reuse software through inheritance, libraries and frameworks.
Most of these are from publicly available open source artifacts.
Developers of these highly reused artifacts can use our results
to make them more reliable and efficient. The results also help
the developers of mobile apps, to understand the risk they run
when the library/framework they build on, changes.

REFERENCES

[1] “Gartner Says Worldwide Mobile Application Store Revenue Forecast
to Surpass $15 Billion in 2011,” Gartner Inc. [Online]. Available: gart-
ner.com/it/page.jsp?id=1529214

[2] Quirolgico, S.; Voas, J.; Kuhn, R.;, “Vetting Mobile Apps,” IT Profes-
sional , vol.13, no.4, pp.9-11, July-Aug. 2011.

[3] Van Agten, T.;, “Google Android Market Tops
400,000 Applications | Distimo,” [Online]. Available:
http://www.distimo.com/blog/2012_01_google-android-market-tops-
400000-applications/, Retrieved February 2, 2012.

[4] Stackpole, B.;, “Your next job: Mobile app de-
veloper? - Computerworld,” [Online]. Available:
http://www.computerworld.com/s/article/9217885/Your_next_job_Mobile
_app_developer_?taxonomyId=11&pageNumber=1, Retrieved February
10, 2012.

[5] Rowinski, D.;, “[Infographic] History of
Mobile App Stores,” [Online]. Available:
http://www.readwriteweb.com/archives/infographic_history_of_mobile_ap
p_stores.php, Retrieved April 16, 2012.

[6] Lohr, S.; “Google’s Do-It-Yourself App Creation Software,” [Online].
Available: http://nytimes.com/2010/07/12/technology/12google.html, Re-
trieved February 10, 2012.

[7] Basili, V.; Rombach, H.D.;, “Support for Comprehensive Reuse,” Soft-
ware Engineering Journal, IEE British Computer Society, vol. 6(5): 303-
316, September 1991

[8] Basili, V.; Briand, L.; Melo, W.;, “How Reuse Influences Productivity
in Object-Oriented Systems,” Communications of the ACM, vol. 39(10):
104-116, October 1996.

[9] Frakes, W.B.; Kang, K.; , “Software reuse research: status and future,”
Software Engineering, IEEE Transactions on , vol.31, no.7, pp. 529- 536,
July 2005.

[10] Ambler, S. W. (1998, Jun 01). The various types of object-oriented reuse.
Computing Canada, 24(21), 24-24.

[11] Davies, J.; German, D.M.; Godfrey, M.W.; Hindle, A.; , “Software
bertillonage: finding the provenance of an entity,” In Proceedings of the
8th Working Conference on Mining Software Repositories (MSR ’11).

[12] Apps on Android Market, https://market.android.com/, Retrieved De-
cember 22, 2011.

[13] comScore Reports January 2012 U.S. Mo-
bile Subscriber Market Share - comScore, Inc,
http://www.comscore.com/Press_Events/Press_Releases/2012/3/comScore
_Reports_January_2012_U.S._Mobile_Subscriber_Market_Share,
Retrieved April 11, 2012.

[14] Lee, M.;, “Android beats Apple in China mobile
platform race: report | Reuters,” [Online]. Available:
http://www.reuters.com/article/2012/04/10/net-us-android-apple-
idUSBRE8390AK20120410, Retrieved April 11, 2012.

[15] ASTRO File Manager. http://www.metago.net/astro-file-manager.php,
Retrieved December 22, 2011.

[16] Private Apps, http://sourceforge.net/userapps/mediawiki/infidel/index.php
?title=Android, Retrieved December 22, 2011.

[17] Dex2jar, http://code.google.com/p/dex2jar/, Retrieved December 22,
2011.

[18] Apache Commons BCEL, http://commons.apache.org/bcel/, Retrieved
December 22, 2011.

[19] Taivalsaari. A;, “On the notion of inheritance,” ACM Comput. Surv. 28,
3 (September 1996), 438-479.

[20] Holub, A.;, “Why extends is evil - JavaWorld.com,” [Online]. Available:
http://www.javaworld.com/javaworld/jw-08-2003/jw-0801-toolbox.html,
Retrieved February 17, 2012.

[21] Denier, S.; Gueheneuc, Y.-G.; , “Mendel: A Model, Metrics, and Rules
to Understand Class Hierarchies,” Program Comprehension, 2008. ICPC
2008. The 16th IEEE International Conference on , vol., no., pp.143-152,
10-13 June 2008.

[22] Mockus, A.; , “Large-Scale Code Reuse in Open Source Software,”
Emerging Trends in FLOSS Research and Development, 2007. FLOSS
’07. First International Workshop on , vol., no., pp.7, 20-26 May 2007.

[23] Google AdMob Ads Android Fundamentals - Google AdMob Ads
SDK - Google Developers, https://developers.google.com/mobile-ads-
sdk/docs/android/fundamentals, Retrieved April 17, 2012.

[24] Google Analytics SDK for Android - Google Analytics - Google
Code, http://code.google.com/apis/analytics/docs/mobile/android.html,
Retrieved April 17, 2012.

[25] org.apache.http.entity.mime (HttpMime 4.1.3
API), http://hc.apache.org/httpcomponents-client-
ga/httpmime/apidocs/org/apache/http/entity/mime/package-
summary.html, Retrieved April 17, 2012.

[26] Apache James Mime4J - Mime4J, http://james.apache.org/mime4j/, Re-
trieved April 17, 2012.

[27] WSI Media Products - WeatherActive Mobile,
http://www.wsi.com/products-media-mobile-weather-active.htm,
Retrieved April 17, 2012.

[28] Android Ad Network | Push Notification ad network | Mobile Ad
network | Android app monetization, http://www.airpush.com/, Retrieved
January 04, 2012.

[29] AndEngine - Free Android 2D OpenGL Game Engine,
http://www.andengine.org/, Retrieved April 17, 2012.

[30] Apache HttpComponents, http://hc.apache.org/, Retrieved April 17,
2012.

[31] AdMarvel - Home, http://www.admarvel.com/index.php, Retrieved April
17, 2012.

[32] Commons IO Overview, http://commons.apache.org/io/, Retrieved April
17, 2012.

[33] Cardino, G.; Baruchelli, F.; Valerio, A.;, “The evaluation of framework
reusability”. SIGAPP Appl. Comput. Rev. 5, 2 (September 1997), 21-27.

[34] Android-apktool - A tool for reengineering Android apk files -
Google Project Hosting, http://code.google.com/p/android-apktool/, Re-
trieved January 04, 2012.

[35] Forum Runner - vBulletin / XenForo / myBB / IP.Board / phpBB Forum
iPhone App, http://www.forumrunner.com/, Retrieved April 16, 2012.

[36] Building and Running | Android Developers,
http://developer.android.com/guide/developing/building/index.html,
Retrieved April 16, 2012.

[37] Conte, M.T.; Trick, A.R.; Gyllenhaal, J.C.; Hwu, W.W.;, “A study of
code reuse and sharing characteristics of Java applications,” Workload
Characterization: Methodology and Case Studies, 1998 , vol., no., pp.27-
35, 1999.

[38] Michail, A.; , “Data mining library reuse patterns in user-selected appli-
cations,” Automated Software Engineering, 1999. 14th IEEE International
Conference on. , vol., no., pp.24-33, Oct 1999.

[39] Michail, A.; , “CodeWeb: data mining library reuse patterns,” Software
Engineering, 2001. ICSE 2001. Proceedings of the 23rd International
Conference on , vol., no., pp. 827- 828, 12-19 May 2001.

[40] Heinemann, L.; Deissenboeck, F.; Gleirscher, M.; Hummel, B.; Irlbeck,
M.;, “On the extent and nature of software reuse in open source Java
projects,” In Proceedings of the 12th international conference on Top
productivity through software reuse (ICSR’11), Klaus Schmid (Ed.).
Springer-Verlag, Berlin, Heidelberg, 207-222.

[41] Roy, C.K.; Cordy, J.R.; , “An Empirical Study of Function Clones in
Open Source Software,” Reverse Engineering, 2008. WCRE ’08. 15th
Working Conference on , vol., no., pp.81-90, 15-18 Oct. 2008

[42] Kapser, C.; Godfrey, M.W.; , “Cloning Considered Harmful,” Reverse
Engineering, 2006. WCRE ’06. 13th Working Conference on , vol., no.,
pp.19-28, Oct. 2006.

[43] Hemel, A.; Trygve Kalleberg, K.; Vermaas, R.; Dolstra E.; “Finding
software license violations through binary code clone detection,” In Pro-
ceedings of the 8th Working Conference on Mining Software Repositories
(MSR ’11).

[44] Shabtai, A.; Fledel, Y.; Elovici, Y.; , “Automated Static Code Analysis
for Classifying Android Applications Using Machine Learning,” Compu-
tational Intelligence and Security (CIS), 2010 International Conference
on , vol., no., pp.329-333, 11-14 Dec. 2010.

[45] Syer, M.D.; Adams, B.; Zou, Y.; Hassan, A.E.;, “Exploring the Devel-
opment of Micro-Apps: A Case Study on the BlackBerry and Android
Platforms,” In Proceedings of the 11th IEEE International Working
Conference on Source Code Analysis and Manipulation (SCAM 2011).

