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Abstract—Changes in software development come in many
forms. Some changes are frequent, idiomatic, or repetitive (e.g.
adding checks for nulls or logging important values) while others
are unique. We hypothesize that unique changes are different
from the more common similar (or non-unique) changes in
important ways; they may require more expertise or represent
code that is more complex or prone to mistakes. As such,
these unique changes are worthy of study. In this paper, we
present a definition of unique changes and provide a method
for identifying them in software project history. Based on the
results of applying our technique on the Linux kernel and two
large projects at Microsoft, we present an empirical study of
unique changes. We explore how prevalent unique changes are
and investigate where they occur along the architecture of the
project. We further investigate developers’ contribution towards
uniqueness of changes. We also describe potential applications of
leveraging the uniqueness of change and implement two of those
applications, evaluating the risk of changes based on uniqueness
and providing change recommendations for non-unique changes.

I. INTRODUCTION

Creating software is a lot like constructing buildings. When
we make changes to buildings, some changes are more repetitive
than others. For example, a typical kitchen remodeling project
might introduce the same marble tops and same colors found
in many kitchens, while keeping other elements such as table
lamps and chairs distinct. Note that, a "typical change" may also
evolve over time: the 1950s saw colorful kitchens (sometimes
pink) while in the 1970s colors got more serious, and the 1980s
introduced more bright colors. Appliances are another example
of a typical renovation: they often get replaced with the latest
models in a remodeling project. However not all changes to
buildings are similar or repetitive. A billionaire might have
expensive taste that requires many unique changes to a kitchen.

The concept of uniqueness is not new to software engi-
neering: Gabel and Su [8] and Hindle et al. [12] showed that
source code is in general repetitive and predictable in nature.
In this paper, we wanted to see whether the same theory can be
applied for software changes as well. In particular, we check
when developers modify an existing piece of code, whether they
change it in a unique way or they follow some repetitive (or non-
unique) pattern. To do that, we first introduce a methodology
to identify unique/non-unique changes to a software based
on lexical and syntactic matching of changes. Then, using
two Microsoft projects and the Linux Kernel 3.0, we ask the
following questions:
• RQ1. What is the extent of unique changes? On

average, 75%, 83%, and 87% changes are unique in the
two Microsoft projects and Linux respectively.

• RQ2. Who introduces unique changes? In general, all
developers commit unique changes; on average, 57% to
94% of the total contribution of a developer is unique in
Microsoft and Linux. Each developer has her own set of
change templates. While introducing non-unique changes,
developers often reuse these templates.

• RQ3. Where do unique changes take place? Certain
subsystems of a project are more prone to unique changes.
For example, in the module fs/jbd, the Linux journal
base file-system module, 97% changes are unique, while
in the module sound/drivers/ in Linux, 94% of total
changes are non-unique. Also, developers introduce non-
unique changes to the same file—66% of the non-unique
changes take place in the same file.

Knowing which changes are unique and which changes
are non-unique has several possible applications in software
engineering:

• Risk analysis: One would expect that changes that are
unique are more error prone than changes that develop-
ers repeatedly make (non-unique changes). We provide
empirical evidence to support this statement in our paper.

• Code reviews: If non-unique changes are recognized in
a code review, then the developers who introduced the
same change earlier can be involved in the code review
process. Conversely, unique changes could be highlighted
to guarantee that they are carefully reviewed.

• Recommendation systems: non-unique changes can be
used as input for recommendation systems: for example,
to recommend how a line would typically be changed
or after some change has been made, recommend other
non-unique changes that are typically made with the initial
change based on past co-occurrence (change completion).

• Automated program repair: We expect that non-unique
changes in bug fixes are better candidates for automated
program repair operations than unique changes. Nguyen
et al. [28] provided initial empirical evidence for this hy-
pothesis. They found that non-unique bug fixes are usually
smaller changes and therefore automated patching tools
could start with small changes and gradually compose
them.

To demonstrate the usefulness of change uniqueness, we
implement a risk analyzer and two recommendation systems.
Based on bug history, our risk analyzer can evaluate how risky
a unique/non-unique change is. An evaluation on our data
shows that non-unique changes are in general less risky. By



learning from past non-unique changes, we also implement two
types of recommendation systems: one for suggesting relevant
changes and other for change completion. On average, our
recommendation systems can suggest changes with 52.11% to
59.91% precision, and recommend change completion correctly
with 38.48% to 42.95% precision.

We make the following contributions in this paper:
• An approach to identify and measure the uniqueness of

changes to a software (Section II).
• Characterization of unique vs. non-unique changes along

developer and spatial dimensions of an evolving project
(Section III).

• Provide evidence that unique changes can be more risky
than non-unique changes by implementing a risk analyzer
(Section IV-A).

• Implement and evaluate two types of recommendation sys-
tems based on change suggestion and change completion
(Section IV-B).

II. METHODOLOGY

This section describes the methodology we used to study
the uniqueness of changes. First, we identify the program
statements in a project that are non-uniquely changed in its
development history. The rest of the program statements in
the development history of the project are then considered as
unique changes.

Consider the example in Table I. Developer Johannes
Berg made some modification to Linux source file
rtl8192ce/hw.c on 7th February, 2013 as shown in
Commit A. The added and deleted lines have prefixes ‘+’
and ‘–’ symbols respectively. Three months later, devel-
oper Larry Finger made similar modifications to source file
rtl8192cu/hw.c in Commit B. The green lines A9 to
A11 and B9 to B11 show the non-uniquely added code in the
corresponding commits. The rest of the changes are considered
as unique changes—A7, A8 in commit A and B6 to B8, and
B12 in commit B.

In the rest of this section, we first describe our data collection
process in Section II-A. Then we talk about our methodology
to categorize unique and non-unique changes. An overview
of the methodology is shown in Figure 1. This involves three
steps: Given a set of changes as input, Step 1 identifies program
statements that are added or deleted non-uniquely. The rest of
the changes are marked as unique (see Section II-B). Step 2
further categorizes non-unique changes to non-unique addition,
deletion, and modification (see Section II-C). Finally, Step 3
extracts non-unique change patterns that repeat multiple times
during the project’s evolution (see Section II-D).

A. Data Collection

First step is to extract all the source code changes from the
version control repository of a project. For each source file
commit in the project evolution, we retrieve the associated
code changes—deleted lines corresponding to the old version
and added lines corresponding to the new version. We also
extract some change-specific meta-information including author,
commit message, and commit date.

For the Microsoft projects, we use CODEMINE [5]—a
framework for collecting and analyzing software development
history. In particular, we retrieve all the committed versions of
each source file and their associated change information. For
each file version, a patch is computed by comparing it with
its previous version using the widely known gnu-diff utility.
We represent the patches in unified diff format with 5 lines of
unchanged code as context and also ignore white spaces while
comparing the two versions.

Linux uses git as its version control system. We use
the command git log -w -unified=5 to retrieve all
the committed patches along with change-specific meta-
information. The option -unified=5 outputs the associated
commit patch in a unified diff format with 5 lines of unchanged
context, as shown in Table I. Option -w ignores white spaces.

B. Identifying Unique Changes

In this step, we identify the program statements in a project
that are uniquely/non-uniquely changed, by analyzing all the
changed lines retrieved from previous step. This takes place in
two steps:

1. Identify change hunks: Input to this step is a set of
program patches (which can be defined as the code that is
committed in a single commit to the source code repository).
Each patch typically contains multiple change regions. Each
such change region with a contiguous list of deleted and added
lines is called a change hunk. Thus, a hunk is defined as a list
of program statements deleted or added contiguously, separated
by at least one line of unchanged context.

In Figure I, line A7 to A11 of Commit A is a hunk. A1 to
A6 and A12 to A15 are unchanged context. We identify all
the hunks that are committed to the source code repository
within the studied period of time, by parsing the committed
patches.

2. Identify unique & non-unique changes: In this step,
we first identify pairs of non-uniquely edited lines across
all the hunks of a project. An edited line r of hunk Hi is
considered to be non-unique, if there is at least one program
statement t in another hunk Hj such that r and t have similar
content (identical lexical and syntactic content) and undergo
identical edit operation. For example, we consider edits “+
a = a ∗ b" and “+ x = y ∗ z" are non-unique since they are
syntactically equivalent i.e. both represent similar multiplication
operations, and also have identical edit operation (both are
added statements). However, edits “- a = a ∗ b" and “+
x = y ∗ z" are unique even though they have similar content,
because they are changed in a different manner—former
statement is deleted and the latter one is added.

Pair (r, t) of hunk Hi and Hj thus forms a non-unique edit
pair (NEPij ) between the hunks Hi and Hj . All such non-
unique edit pairs are then aggregated by pair-wise comparison
of all the studied hunks and form a global set of NEP (see
Equation 1)

NEPij = {(r, t)|r ∈ Hi ∧ t ∈ Hj ∧ clone(r, t)} (1)

NEP =
⋃
i 6=j

NEPij (2)



TABLE I: Example of Unique and non-unique changes adapted from Linux. The deleted and added statements start with ‘–’ and
‘+’ respectively; non-unique changes are marked in green. Lines A9, A10, and A11 are non-uniquely added w.r.t. B9, B10, B11
respectively. However, A7 and A8 are unique deletions since it does not resemble any of the corresponding deleted lines B6, B7 or
B8.

Commit A: e1a0c6b3a4b27ed5f21291d0bbee2167ec201ef5
src file: /drivers/net/wireless/rtlwifi/rtl8192ce/hw.c
developer: Johannes Berg
commit date: 2013-02-07
Log: mac80211: stop toggling IEEE80211_HT_CAP_SUP_WIDTH_20_40

A1 . vo id r t l 9 2 c e _ u p d a t e _ h a l _ r a t e _ m a s k ( . . . ) {
A2 . . . .
A3 . s t r u c t r t l _ h a l ∗ r t l h a l = r t l _ h a l ( r t l _ p r i v ( hw ) ) ;
A4 . s t r u c t r t l _ s t a _ i n f o ∗ s t a _ e n t r y = NULL;
A5 . . . .
A6 . u8 r a t r _ i n d e x ;
A7.− u8 ci_40mhz = ( cap & 80211) ? 1 : 0 ;
A8.− u8 ci_20mhz = ( cap & 80211) ? 1 : 0 ;
A9 . + u8 cbw_40mhz = ( s b a n d w i d t h >= 80211) ? 1 : 0 ;

A10 . + u8 cgi_40mhz = cbw_40mhz ? 1 : 0 ;
A11 . + u8 cgi_20mhz = cap & 80211 ? 1 : 0 ;
A12 . enum w i r e l e s s _ m o d e w i r e l e s s m o d e = 0 ;
A13 . boo l s h o r t g i = f a l s e ;
A14 . . . .
A15 . }

Commit B: 5b8df24e22e0b00b599cb9ae63dbb96e1959be30
src file: drivers/net/wireless/rtlwifi/rtl8192cu/hw.c
developer: Larry Finger
commit date: 2013-05-30
Log: rtlwifi: rtl8192cu: Fix problem in connecting to WEP or WPA(1) networks

B1 . vo id r t l 9 2 c u _ u p d a t e _ h a l _ r a t e _ m a s k ( . . . ) {
B2 . . . .
B3 . s t r u c t r t l _ p h y ∗ r t l p h y = &( r t l p r i v −>phy ) ;
B4 . s t r u c t r t l _ m a c ∗mac = r t l _ m a c ( r t l _ p r i v ( hw ) ) ;
B5 . . . .
B6.− u8 ci_40mhz = mac−>s g i _ 4 0 ;
B7.− u8 ci_20mhz = mac−>s g i _ 2 0 ;
B8.− enum w i r e l e s s _ m o d e w i r e l e s s m o d e = mac−>mode ;
B9 . + u8 cbw_40mhz = ( bandwid th >= 80211) ? 1 : 0 ;

B10 . + u8 cgi_40mhz = curtxbw_40mhz ? 1 : 0 ;
B11 . + u8 cgi_20mhz = cap & 80211 ? 1 : 0 ;
B12 . + enum w i r e l e s s _ m o d e w i r e l e s s m o d e = 0 ;
B13 . boo l s h o r t g i = f a l s e ;
B14 . . . .
B15 . }

Non-unique Changes (NUC ) are a set of edited lines that
are present in NEP . The rest of the changes in a project are
unique changes. Thus, if C represents all the changed lines in
a project, Unique Change (UC ) is a set of edited lines that are
present in C but not included in NUC , i.e., UC = C −NUC .

In Equation 1, similarity (or non-uniqueness) between the
edited statements is determined by a function clone. Although
there is no precise definition of clone in the literature, it
mostly relies on the computation of individual clone detectors.
The most common one is textual similarity of two edits. It
can also be modeled as n-gram similarity [12], AST-based
similarity [28], [32], etc. In this work, we consider two edits
as non-unique, if their contents have identical lexical and
syntactic content [16] and they are also edited similarly (either
both are added or both are deleted).

Step 1 of Figure 1 summarizes the above stages. It takes
five hunks as input. Edits -a2 and +a3 of Hunk_a are non-
unique to -b2 and +b3 of Hunk_b. Hence, NEPab = {(-a2,-b2),
(+a3,+b3)}. Likewise, NEPbc = {(-b2,-c2), (+b3,+c4)}, NEPcd

= {(-c1,-d1)}, and NEPad = {(+a3,+d2)}. Thus, Non-unique
Change set (NUC) = {-a2,+a3,-b2,+b3,-c2,+c4,-d1,+d2}. The
rest of the changes of the input hunks are unique (UC) = {-a1,
+a4, -b1, -c3, -e1, +e2}.

Implementation: To detect the NEP , we adapt Reper-
toire [31], a lexical based change analysis tool that identify
non-unique changes. The basic steps are as follows:

(1) Repertoire pre-processes the hunks to eliminate diff-
specific meta-information such as edit operations and commit
dates. The meta-information is stored in a database for future
use. (2) Using CCFinderX [16], a lexical token based clone
detection technique, Repertoire determines non-unique code
content (clone) between the processed hunks. The output of
CCFinderX is a set of line pairs having identical syntax.
CCFinderX takes a token threshold as input, that ensures a
minimum number of contiguous tokens that has to be non-
unique between the cloned regions. In our experiment, we set

this token threshold to 50, based on experimental analysis
as discussed in RQ1 in Section III. This ensures at least
50 contiguous tokens (around 7-8 lines) are non-unique in
the detected cloned region. (3) For each identified cloned
pair, Repertoire matches their edit operations. The clone pairs
without identical edit operations are eliminated. Repertoire
also disregards the clone pairs that has unmodified contexts.
The final output is NEP—a set of edit pairs with similar edit
content and edit operations. Note that, since CCFinderX outputs
clones that have at least 7-8 lines of contiguous non-uniqueness,
Repertoire marks only those changes as a non-unique edit
pair that either belong to a larger non-unique change, or a
small non-unique change that takes place in between two large
unchanged contexts, with at least 7-8 lines of similarity. Such a
large threshold helps us to focus only on significant non-unique
changes and thus avoids unintended clones.

In Table I, Repertoire identifies (A9, B9), (A10, B10), and
(A11, B11) are non-uniquely added. The other edits (A7 and
A8 in Commit A and B6 to B8 and B12 in Commit B) are
marked as unique changes.

C. Categorizing Change Uniqueness

In this step, we further categorize the non-unique changes
to non-unique addition, deletion, and modification. Since it is
difficult to establish one-to-one correspondence between an
added and deleted line, we focus on the code region i.e. hunk
instead.
ND: non-unique Deletion. Between hunks (hi,hj), if there
exists a non-unique edit pair (of 50 tokens in our implemen-
tation) where program statements are deleted (possibly with
some unchanged context of program statements) in both hi

and hj non-uniquely, but there is no addition of program
statements. For example between Hunk_c and Hunk_d in
Figure 1, only c1 is deleted non-uniquely to d1. Thus, Hunk_c
and Hunk_d is categorized as ND. ND indicates that the code
region corresponding to the hunk pair was non-unique before



Step 1 
Identifying Unique Changes  

Step 2 
Categorizing Change Uniqueness  

Step 3 
Extracting Non-unique Pattern  Input 

Hunk_a	  	  
(-‐a1,	  -‐a2,	  +a3,	  +a4)	  

Hunk_b	  
(-‐b1,	  -‐b2,	  +b3)	  

Hunk_c	  
(-‐c1,	  -‐c2,	  -‐c3,	  +c4)	  

Hunk_d	  
(-‐d1,	  +d2)	  

Hunk_e	  
(-‐e1,	  +e2)	  

	  
	  

Non-‐unique	  Edit	  Pair	  (NEP):	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
(-‐a2,	  -‐b2),	  (+a3,	  +b3),	  (-‐b2,	  -‐c2),	  
(+b3,	  +c4),	  (-‐c1,	  -‐d1),	  (+a3,	  +d2)	  

	  
Non-‐unique	  Change	  (NUC):	  

{-‐a2,	  +a3,	  -‐b2,	  +b3,	  	  
-‐c1,	  -‐c2,	  +c4,	  -‐d1,	  	  +d2}	  

	  
	  Unique	  Change	  (UC):	  

{-‐a1,	  +a4,	  -‐b1,	  -‐c3,	  
-‐e1,	  +e2}	  

Hunk_a	  	  
(-‐a2,	  +a3)	  

Unique	  
Hunk_e	  

Hunk_b	  	  
(-‐b2,	  +b3)	  

Hunk_c	  	  
(-‐c2,	  +c4)	  

NM NM 

Hunk_c	  	  
(-‐c1)	  

Hunk_d	  	  
(-‐d1)	  

ND 

Hunk_a	  	  
(+a3)	  

Hunk_d	  	  
(+d2)	  

NA 

Hunk_a	  	  
(-‐a2,	  +a3)	  

Hunk_b	  	  
(-‐b2,	  +b3)	  

Hunk_c	  	  
(-‐c2,	  +c4)	  

Fig. 1: Overview of Methodology. Hunk_a, Hunk_b, Hunk_c, Hunk_d, and Hunk_e are initial input. The deleted and added lines in
each of the hunks are represented by ‘–’ and ‘+’ . Here we assume that, between Hunk_a and Hunk_b, line a2 is deleted similarly
to b2, and a3 is added similarly to b3. Between Hunk_b and Hunk_c, line b2 is deleted similarly to c2, and b3 is added similarly
to c4. Likewise, c1 and d1 are similarly deleted, and a3 and d2 are similarly added.

the change. However, after the modification, the non-unique
lines were deleted, and the region became unique with respect
to each other, since unique program statements were added.
NA: non-unique Addition. Similar to ND, but there is non-
unique addition of program statements, but no non-unique
deletion. For example hunk pair (Hunk_a, Hunk_d) in Figure 1
shows NA non-uniqueness since only a3 is added non-uniquely
to Hunk_a and d2 to Hunk_d. NA indicates two unique code
regions became non-unique after the modifications.
NM: non-unique Modification. Since a modification can be
represented as a deletion in the old version and an addition
in the new version, NM between two hunks indicates at least
one non-unique edit pair between the two hunks is added
and at least one non-unique edit pair is deleted. Consider the
hunk pair (Hunk_a, Hunk_b) in Figure 1: a2 and b2 are non-
unique deletions while a3 and b3 are non-unique additions.
Thus, (Hunk_a, Hunk_b) belongs to NM. Likewise, (Hunk_b,
Hunk_c) is NM. NM signifies the corresponding code region
of the hunk pair was non-unique before, and even after the
modification they remain non-unique.

A hunk is Unique, if all of its changes belong to the unique
changed set (UC ), i.e., none of its edits resemble other edits
across all the studied hunks. In Figure 1, Hunk_e is unique
since its edits -e1, +e2 are not similar to any of the changes.

Such fine grained categorization of hunk uniqueness shows
how uniquely similar code evolve over time, similar to
tracking clone geneology [19]. For example, the code regions
corresponding to Commit A and Commit B in Figure I were
unique initially, but after the addition they become non-unique
(NA). In this case, with time unique code becomes non-unique.

D. Extracting Non-unique Patterns

As shown in Figure I, program statements are often changed
non-uniquely. Some of these non-unique changes always occur
together to form a non-unique pattern. For example, all the
three edits A9, A10, A11 of Commit A in Figure I repeat in
Commit B as B9, B10, B11; thus showing a repeated change
pattern. In this step, we extract such non-unique patterns from
the non-unique hunks. Later, to build recommendation system
in Section IV-B, we use these patterns as common change
template.

If a list of edited lines Ei of hunk hi is non-unique to a list
of edits Ej of hunk hj , a Non-unique Pattern (NPij ) exists
between hunks hi and hj . Ei and Ej represent the signature
of NPij corresponding to hunks hi and hj respectively. For
example, in Step 3 of Figure 1, edits [-a2, +a3] of Hunk_a are
similar to [-b2, +b3] of Hunk_b; Thus, they form a non-unique
pattern NPab = {[-a2, +a3], [-b2, +b3]}, where [-a2, +a3]
is the signature of NPab for Hunk_a, and [-b2, +b3] is the
signature of NPab for Hunk_b.

A change pattern may be repeated across multiple hunks. If
hunk hi shares a non-unique pattern with hunk hj and hunk
hk with identical signature, they are merged to form a single
non-unique pattern NPijk . For example, NPabc = {[-a2, +a3],
[-b2, +b3], [-c2,+c4]} is a non-unique pattern extracted from
Hunk_a, Hunk_b, Hunk_c, as shown in Step 3 of Figure 1.

This reduces to a maximal clique problem for a graph formed
by non-unique hunk pairs. We adapted Carraghan et al.’s
algorithm of maximal clique solving problem [2] to detect
the non-unique patterns.

III. STUDY OF CHARACTERISTICS

Study Subjects: In this study, we analyzed uniqueness of
changes in both open and closed source software development.
We studied the evolution of proprietary projects A and B from
Microsoft, and a large scale open source software, Linux 3.0
(see Table II). Project A and Linux are written in C, and Project
B is written in C++. We analyze the changes made in the source
files (.c, .cpp etc.), ignoring the interface declarations in the
header files (.h), documentation etc.

First, from the version control system of a project we retrieve
all the file commits that are made within the studied period
(2011-05-19 to 2013-08-29). Next, we classify the changes
associated with the commits into two categories: unique and
non-unique. In total, we studied more than 17 million lines
of changes in all the three projects in their two plus years
of parallel evolution history. Around six thousand developers
contributed those changes.

Prior to analyzing properties of unique and non-unique
changes, we begin with a straightforward question that checks
the proportion of unique and non-unique changes in a project.



TABLE II: Study Subject

Project A
Total number of changed files 2,485
Number of File Commits 6,264
Number of Changed Lines 364,737
Number of Hunks 50,102
Development Period 2010-12-03 to 2013-06-03
Number of Developers 289

Project B
Total number of changed files 56,803
Number of File Commits 227,844
Number of Changed Lines 12,864,319
Number of Hunks 1,854,666
Development Period 2010-11-30 to 2013-06-11
Number of Developers 1,338

Linux 3.0
Total number of changed files 17,695
Number of File Commits 166,749
Number of Changed Lines 4,623,333
Number of Hunks 798,399
Development Period 2011-05-19 to 2013-08-29
Number of Developers 4,216
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Fig. 2: Extent of unique changes over different token size in Linux

RQ1. What is the extent of unique changes?
Figure 2 shows the extent of uniquely added and deleted

lines with a varying token threshold (10 to 100), in Linux. Note
that a threshold represents minimum number of contiguous
tokens that need to be similar between two cloned regions. At
threshold 10 (around 1-2 lines), 70.81% of changed lines is
unique, while at threshold 100 (around 16-20 lines), 93.61%
changed lines are unique. The median and average of uniquely
changed lines are 88.38% and 85.61% respectively, which is
also achieved at threshold 50. Thus, uniqueness increases with
the increase of token threshold for both added and deleted
lines.

Since, source code in general lacks uniqueness [8], non-
unique changes detected at a very low threshold like 10
may simply detect changes caused by program construct,
for example an addition of a for loop. In contrast, if the
threshold size is set to a very high value, we might ignore
some important non-unique changes that developers introduce
in purpose. This leads us to choose a middle ground—threshold
50 for the rest of our experiment. A non-unique change at
threshold 50 means that there are at least 7 to 8 non-unique
lines. These 7 - 8 lines can be either a large non-unique change
or a small non-unique change with unchanged context above
and below the change also being non-unique. Table III shows
the extent of uniquely changed lines for all the studied projects
at token threshold 50. Project B shows maximum non-unique
changes (three million lines) over its entire evolution period.

TABLE III: Extent of Uniquely Changed Lines (with a token
threshold of 50)

Changed Lines (LOC)
Total Unique Non-Unique

Project A 364,737 82.77% 17.44%
Project B 12,864,319 74.82% 25.18%
Linux 4,623,333 87.41% 12.59%

TABLE IV: Distribution of Non-Uniquely Changed Hunks. Note
that these categories are not disjoint, because a hunk can share
only non-unique addition with one hunk, while sharing non-
unique deletion or modification with another.

non-unique non-unique non-unique
addition deletion modification

Project A 82.25% 24.31% 24.20%
Project B 71.54% 25.75% 18.71%
Linux 34.94% 30.98% 34.08%

Now that we have seen the extent of non-unique changed
lines in a project - 12% to 25%, we would like to shed light
on their evolutionary pattern, i.e. whether they are added,
deleted, or modified non-uniquely. Since it is difficult to
identify mapping between individual added and deleted lines,
we focus on added and deleted regions (i.e. hunks), as discussed
in Section II-C. Table IV shows the distribution of hunk
uniqueness across projects. In projects A and B, non-unique
addition dominates significantly (82% and 71%), while non-
unique deletion and modification share similar proportion. In
Linux, all the three categories are in the same range (30% to
34%) .

Finally, we check how many non-unique patterns are formed
from the observed non-unique changes (see Section II-D).
The following table shows the result. Three million non-
unique changed lines in Microsoft codebase come from only
300K distinct non-unique patterns. In Linux, 582K non-unique
changed lines come from 142K patterns. On average, these
patterns occur 3.4 and 3.3 times in Microsoft projects and
Linux respectively. They are often short-lived—average lifetime
(last commit date - first commit date) is 63 and 67 days
in Microsoft projects and Linux respectively. These results
indicate developers often introduce non-unique change patterns,
use them few times at quick succession, and then stop using
them.

non-unique non-unique Avg. Avg.
change (KLOC) patterns Occurrence Lifetime

Microsoft 3,278 324,285 3.4 63.04
(A + B)
Linux 582 142,633 3.3 67.79

Result 1: Unique changes are more common than
non-unique changes. Non-unique changes form distinct
patterns that often repeat multiple times in the code base
within a short span of time.

Since the extent of non-unique changes is non-trivial,
we wonder who commits such non-unique changes. Since
developers usually have individual coding style [29], [14], it
may be possible that some developers introduce more non-
unique changes than others. It is also important to know whose
changes they borrow. Especially, if we find that developers



0	  

20	  

40	  

60	  

80	  

100	  

10	   20	   30	   40	   50	   60	   70	   80	   90	   100	  

de
ve
lop

er
	  co

un
t	  (
%)

	  

non-‐unique	  changes	  (%)	  

linux	  

(Project	  A	  +	  Project	  B)	  

(a) Frequency of developers performing non-unique changes

0	  

50	  

100	  

150	  

200	  

250	  

300	  

1	   3	   5	   7	   9	   11	   13	   15	   17	   19	   21	   23	  

Fr
eq

ue
nc
y	  
	  

(in
	  1
00
0	  
sc
al
e)
	  

Number	  of	  developers	  per	  nun-‐unique	  pa;ern	  	  	  	  	  	  	  	  	  	  	  
(developer	  diversity)	  

Linux	  

Project	  A	  +	  Project	  B	  

(b) Developer diversity of non-unique patterns

Fig. 3: Characteristics of non-unique changes along the dimension of developers.

follow their own non-unique pattern often, this broadens the
scope of personalized recommendation system [15]. All these
lead us to question:

RQ2. Who introduces unique changes?
First, we measure the extent of non-unique changes over

total changes that a developer has committed over time.
Figure 3(a) shows the frequency distribution of the proportion
of non-unique changes per developer. Almost all developers
commit non-unique changes, although some commit more
than others. For example, we found 10 and 20 developers in
Linux and Microsoft respectively, who committed only non-
unique changes. A closer look reveals that these developers
contributions in respective projects are considerably low—only
1 to 16 lines of changes during the studied period. On average,
42.67% changes of a Microsoft developer is non-unique, and
Linux developers commit more unique changes—only 5.83%
of a developer’s commit is non-unique in Linux.

We further check whose changes developers borrow to
introduce non-uniqueness. We measure that by computing
developer diversity—the number of developers using a non-
unique pattern. Figure 3(b) shows the frequency distribution of
developer diversity. A large number of patterns (105,208 and
278,509 in Linux and Microsoft Projects) are actually owned
by a single developer. The curve falls sharply as developer
diversity increases. Only 0.39% and 0.55% of total non-unique
patterns are introduced by more than 4 developers in the
Microsoft projects and Linux respectively. Such less diverse
changes suggest that developers have their own set of patterns
that they repeatedly use. A highly diverse change pattern
often suggests a system wide pervasive change. For example
we find a change pattern with developer diversity of 10 in
Linux that modified an existing logging feature. In another
instance, multiple developers repeatedly change identifier type
proc_inode to type proc_ns and the associated code over
a long period of time.

Result 2: Developers have their own set of change
patterns that they use repeatedly.

Since we have seen that developers repeatedly use non-
unique patterns, we wonder where they are used. Knowing the

answer not only serves researcher’s curiosity, it has several
advantages. For example, if two software components often
change in non-unique manner, the developers of one component
may help in reviewing the code of the other. Also, the same
group of developers may be assigned to maintain two such
closely related modules. Thus, we ask the following question:

RQ3. Where do unique changes take place?
First we measure extent of non-unique changes per file. For

each file, we take the ratio of unique and total changes across
all the commits. Thus, if a file f is committed n times within
the studied period, ratio of unique changes for file f =∑n

i uniquely changed lines∑n
i total changed lines

Table V shows top 10 sub-directories in Linux (up to 2 levels
from the root of the source code) that contain most unique and
non-unique changes. While the journaling block-device module
fs/jbd contains 97.52% of unique changes, the sound driver
module sound/drivers has 94.34% non-unique changes.
Non-unique changes are mostly restricted within the same file.
In 23.67% cases, non-unique changes are introduced across
different commits of the same file, while in 42.24% cases even
within the same commit (but across hunks). The rest 34.07%
of non-unique changes are made across different files.

Also, some files often change in a non-unique fashion.
Table VI shows top 5 file pairs in Linux sharing non-unique
changes. Note that, in most cases name of the file pairs are also
very similar and relates to similar functionality. This shows
that similar software artifacts often change non-uniquely.

TABLE V: Top 10 development directories containing unique and
non-unique changes

Rank Unique Changes (%) Non-Unique Changes (%)

1. fs/jbd/ 97.52% sound/drivers/ 94.34%
2. drivers/video/ 94.25% lib/ 92.86%
3. fs/ext4/ 93.79% net/netlink/ 91.67%
4. fs/dlm/ 92.54% sound/ppc/ 90.00%
5. drivers/w1/ 91.90% fs/logfs/ 89.74%
6. drivers/ide/ 91.58% fs/jfs/ 89.28%
7. fs/ubifs/ 91.40% drivers/nfc/ 88.89%
8. arch/microblaze/ 91.09% drivers/hwmon/ 86.67%
9. drivers/block/ 90.91% fs/proc/ 83.33%
10. drivers/char/ 90.71% fs/hfsplus/ 81.25%



TABLE VI: Top 5 file couplings with non-unique changes

Rank File1 File2 #Non-Uniquely
Changed Lines

1. /drivers/staging/csr/csr_wifi_router_ctrl_serialize.c /drivers/staging/csr/csr_wifi_sme_serialize.c 20445
2. /drivers/media/common/siano/smsdvb-debugfs.c /drivers/media/common/siano/smsdvb.c 4200
3. /drivers/net/wireless/rtlwifi/rtl8192c/phy_common.c /drivers/net/wireless/rtlwifi/rtl8192de/phy.c 3087
4. /drivers/staging/csr/csr_wifi_router_serialize.c /drivers/staging/csr/csr_wifi_sme_serialize.c 2685
5. /drivers/gpu/drm/nouveau/core/engine/graph/ctxnvc0.c /drivers/gpu/drm/nouveau/core/engine/graph/ctxnve0.c 2648

Result 3: Unique & non-unique changes are localized
in certain modules.

IV. APPLICATIONS

Distinguishing non-unique changes from unique ones can
facilitate many software engineering applications. We demon-
strate this concretely by implementing a risk analysis sys-
tem (Section IV-A) and two recommendation systems (Sec-
tion IV-B).

A. Risk Analysis
There has been decades of research on software risk

analysis [10]. Using sophisticated statistical or machine learning
models [30], [27], risk of a software component is predicted,
primarily based on its evolutionary history. Different types
of software metrics including product metrics (lines of code,
source code complexity), process metrics (pre-release bugs,
software churn), and social metrics (number of developers)
are typically used for risk prediction models [30]. Nagappan
et al. found that changed code is also a good indicator of
bug-proneness [27]. However, not all changes are necessarily
buggy. In this section, we show that categorizing changes as
unique and non-unique can further facilitate the risk assessment
of a file commit.

Methodology: Our risk analyzer works on the assumption
that if a bug is introduced to the codebase, the bug will be fixed
within few months. For example, if a commit c introduces a
bug to file f , soon there will be a bug-fix commit cb to the
file (within t months from the commit date of c). Here, we
build a prediction model that assesses c’s risk of introducing
a bug. We start with analyzing the evolution history of file f .
Figure 4 illustrates how the risk analyzer works.

c4 c1 c2 c3 c5 c6 File f 

lookup time 

★ 

Release 

bug1 bug2 bug3 
★ ★ 

T1 T1 

pre-release period post-release period 

Fig. 4: Workflow of the Risk Analyzer per File Commit. The
timeline shows the evolution of a file f . Each marker (triangle
or star) is a commit, where red stars indicate bug-fix commits (c3,
c4, and c6). c3 and c4 are pre-release fixes, c6 is a post-release
fix as c6’s commit date is after the release date, marked in red
line.

First, we identify all the bug-fix commits (cb) that fix errors
or bugs in the codebase. For Microsoft projects, we identify
such commits from bug fix database. For Linux, we identify
the bug fix commits whose commit messages contain at least

one of the key words: ‘bug’, ‘fix’, and ‘error’. Then for each
file commit we analyze its risk of introducing a bug w.r.t. pre
and post-release bugs. For a file f , if a bug-fix commit cb is
found within t months of a commit c, we consider that c may
have introduced that bug, hence c’s bug-potential is non-zero.
We measure risk of a commit by its bug potential—the number
of bugs that are fixed within t months of the commit. The bug
potential starts from 0, indicating zero risk.

We treat pre-release and post-release bugs differently. As
the name suggests, the pre-release bugs are detected and fixed
before the release of a software. Usually they are detected
through continuous testing, often parallel to development
process. Hence, we assume that these bugs should be detected
and fixed within few months from their date of introduction.
To detect pre-release bugs, we look forward in the evolution
history of the file up-to a predefined lookup time t, and check
whether the file has undergone any bug-fixes in the future.
The bug potential of a commit is equal to the number of pre-
release bug-fixes found within that lookup time. For example,
in Figure 4, for a lookup time t = T1, commit c1 sees only
one pre-release bug-fix c3. Hence, c1’s bug potential become
1. Similarly, c2 has bug potential 2 as it sees 2 pre-release
fixes c3 and c4 within lookup time t = T1.

Post-release bugs are reported by customers facing real-
world problems, only after the software is released. Since
these bugs are noticed only after real-world deployment, they
are in general serious in nature. The post-release bugs were
not detected during the active development period. Thus, we
assume every commit in the pre-release can potentially cause
the post-release bug irrespective of its time frame; i.e. if a
post-release bug is fixed to a file f , any change throughout f ’s
evolution can potentially introduce the bug. Thus for a post-
release bug, we increment the bug potential of each commit of
f prior to the fix, similar to Tarvo et al. [35]. . For instance, for
the post release fix c6, we assume all the previous commits (c1
to c5) have equal potential to introduce the error and increment
their bug potential by one. Thus, c1’s bug potential become
1 + 1 = 2, c2’s bug potential become 2 + 1 = 3 and so on.

To check whether unique file commits are more risky than
non-unique file commits, we compare the bug potential of
the two using non-parametric Mann-Whitney-Wilcoxon test
(MWW) [34]. First, we calculate the non-uniqueness of a file
commit as the ratio of number of non-unique changed lines (S)
to the total changed lines (T) associated in the commit 1. Next,
we categorize the file commits into unique and non-unique
groups based on their non-uniqueness—a file commit is non-
unique, if its non-uniqueness is more than a chosen threshold

1Since our goal is to assess risk for each file commit, the risk analysis
model is based on changed lines associated with each commit, instead of hunk



TABLE VII: Wilcoxon-Mann-Whitney test of unique vs. non-
unique commits in assessing risk of introducing bugs

Linux Microsoft (proj A + B)
non-uniqueness lookup

threshold period p-value risk p-value risk

0.6

1 < 0.0001 0.93 < 0.0001 0.455
2 < 0.0001 0.88 0 0.46
3 < 0.0001 0.88 0 0.46
4 < 0.0001 0.87 0 0.46
5 < 0.0001 0.86 0 0.46
6 < 0.0001 0.85 0 0.45

0.5

1 < 0.0001 1.02 < 0.0001 0.54
2 < 0.0001 0.97 0 0.54
3 < 0.0001 0.96 0 0.54
4 < 0.0001 0.95 0 0.54
5 < 0.0001 0.93 0 0.54
6 < 0.0001 0.92 0 0.54

and vice versa. We then measure the risk of introducing bugs
of non-unique commits over the unique commits.

risk =
average bug potential of non-unique group

average bug potential of unique group

Note that risk is computed as a ratio of the average bug
potentials. Therefore, the number of unique or non-unique
changes will not impact the risk value.

Result. We repeat the experiments for lookup time 1 to
6 months with varying uniqueness threshold (0.5 and 0.6).
The result of WMW test on the potential bug count of
unique and non-unique groups is shown in Table VII. For
all lookup periods, p-values of WMW is significant indicating
the bug-potential of unique and non-unique changes differ with
statistical significance.

Also, risk is less than 1 for all lookup periods and non-
uniqueness thresholds, except the one marked in red. This
means, on average, the bug potential of non-unique changes is
less than bug potential of unique changes and the difference
is statistically significant. In fact, for Microsoft projects non-
unique changes are 50% less risky than the unique changes.
That means in Microsoft code developers may introduce non-
unique changes with more confidence.

However, for Linux projects the risk ratio is close to one.
To further understand this, we measure CohenD’s effect size
between unique and non-unique commit groups [3]. In all the
cases we observe a low effect size, varying from 0.12 to 0.19.
This shows, non-unique changes in Linux may not differ much
from the unique changes in terms of their bug proneness. In
fact, we found 836 non-unique patterns in Linux that have
average bug potential beyond 50. However, we also notice that
there are 180K non-unique patterns that do not introduce any
errors to the codebase.

B. Recommendation System
There exists a wide variety of recommendation systems that

suggest possible changes or change locations to developers to
facilitate software development process [33]. Learning from
the non-unique changes in the history of a project evolution,
here we build two different recommendation systems:
• REC-I. When developers select a code fragment to modify,

it recommends possible changes that similar code has
experienced previously.

• REC-II. When developers make a non-unique change, it
recommends other change patterns that co-occurred with
that committed change in the past.

Recommendation System I (REC-I): REC-I suggests relevant
changes to the developer using the history of non-unique
changes. When developers modify code, it shows up in the
commit as a set of program statements that are deleted and a
set of program statements that are added. Therefore, when a
developer selects some program statements to modify, REC-I
searches for a similar set of deleted program statements from
the commit history of the project. If a non-unique match is
found, REC-I recommends the set of corresponding program
statements that were added in the commit history to the
developer. In case of multiple matches (i.e., different set of
program statements that are added for a similar set of program
statements that were deleted in different parts of the code),
REC-I suggests all of them along with their frequency counts.
For example, consider Table VIII. If a developer selects line
B1 to delete, REC-I searches from the previous change history
and finds a match A1 that is a non-unique deletion. REC-I
then suggests the corresponding line A2 as possible addition.

To measure the accuracy of REC-I, we need a training data
set and a test data set consisting of non-unique changes. We
split the commit history of a project at a given point of time,
and all the commit history data before this point is considered
as training data and the data over the next three months from
this point in time is considered as test data. For each change
in the test data, we query REC-I that searches the training
data for a recommendation. Thus, for a query q if Rq denotes
REC-I output, and Eq denotes actual usage (obtained from the
test data),

Precision (P ): Percentage of REC-I recommendation that

appears in expected usage from the test data, i.e.,
|Eq ∩Rq|
|Rq|

Recall (R): Percentage of expected usage (as appeared in

the test data) that is recommended by REC-I, i.e.,
|Rq ∩ Eq|
|Eq|

Note that we evaluate the precision and recall only for those
changes in the test data for which a recommendation was made
by REC-I.

The accuracy of REC-I is measured at each month (the point
in time that separates the training and testing data) for the
entire study period (see Figure 5(a)). The overall performance
of REC-I is measured by computing the mean of all the
precision and recall values over the entire study period, similar
to Zimmermann et al. [39].

P =
1

N

N∑
i=i

Pi R =
1

N

N∑
i=i

Ri

Table IX shows the average precision and recall of REC-I.
For project A, B, and Linux precision are 59.91%, 57.41%,
and 52.11% respectively. This means when REC-I is returning
a query with suggestive changes, there is on average 52.11%
to 59.91% chances that developers will accept that recom-
mendation. REC-I’s recall values are 67.36%, 65.44%, and
59.02% respectively i.e., REC-I successfully returned 59% to
67% of expected correct suggestion. Such low value of recall is
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Fig. 5: Accuracy of Recommendation Systems for Project B

partially due to our choice of high token threshold; we could not
suggest non-unique changes that have smaller change size. For
the same reason, we perform reasonably well in precision w.r.t.
state of the art recommendation system by Nguyen et al. [28],
based on similar change uniqueness philosophy. They reported
a precision of 30% with top-3 and top-1 suggestion. Though
a direct comparison with the top-3 and top-1 precision is not
possible (though in most of the cases REC-I suggests fewer
than five suggestion), our recommendation system performs
reasonably well in predicting non-unique changes.

Interestingly, from Figure 5(a) we find that the precision and
recall vary periodically over time. We believe this behavior
is related to the short lifespan of the non-unique patterns
(See RQ1 of Section III). When developers introduce a non-
unique pattern, they use it frequently for a short amount of
time and then stop using it. Once REC-I learns the pattern,
it continues suggesting it. As long as the developers use that
pattern, the accuracy of REC-1 remains high. However, when
the developers stop using the pattern, the accuracy falls off
until new non-unique changes are introduced. All the three
projects show this periodic trend.

TABLE IX: Overall Performance of the Recommendation Systems
REC-I REC-II

precision recall precision recall
Project A 59.91% 67.36% 38.48% 50.79%
Project B 57.41% 65.44% 41.16% 46.95%

Linux 52.11% 59.02% 42.95% 37.53%

Recommendation System II (REC-II): We observe that
developers often use multiple non-unique changes together,
in the same commit. For example, changes of Table VIII are
committed together 4 times in Linux in different files. They
also appear in different method bodies. Leveraging such co-
occurrences, we build Recommendation System II (REC-II) to
suggest relevant non-unique changes. If a developer introduces
a non-unique change in the code-base, REC-II searches for
other change patterns that are committed together in the past
along with the introduced change. For each match, REC-II
displays frequency, i.e., number of times the recommended
changes were committed together.

Similar to REC-I accuracy, we measure REC-II accuracy
over a continuous time period. Figure 5(b) shows the rolling
precision and recall for REC-II for project B. The other two

projects show similar trend. We notice that REC-II’s precision
and recall shows similar periodic nature as those of REC-I.
The average precision for projects A, B, and Linux are 38.48%,
41.16%, and 42.95% respectively. Similarly, the recall values
are 50.79%, 46.95%, and 37.53% respectively (see Table IX).

V. RELATED WORK

Uniqueness of Code. Prior researches show a general lack
of uniqueness in source code. Gable and Su study source code
uniqueness across 6000 projects including 420 million lines of
code and find that code fragments are similar up to seven lines
(6 to 40 tokens) [8]. Using n-gram model, Hindle et al. show
that source code is repetitive in nature and has high degree
of predictability [12]. Kamiya et al. find 10% to 30% of code
similarity in large scale projects (e.g., gcc-8.7%, JDK-29%,
Linux-22.7% etc) [16]. James et al. find evidences of adopted
code in device driver modules between Linux and FreeBSD [4].
In this work, instead of looking at non-unique code, we look
at how non-uniquely code evolves with time.

There are research on repetitiveness of code change as well.
Ray et al. [31] show that around 11% to 16% changes are
non-unique between FreeBSD, NetBSD, and OpenBSD in each
release. In a recent study, Nguyen et al. [28] inspect a large
corpus of changes for 2,841 open source java projects, and find
that up to 70-100% of source code is non-uniquely changed
within and across projects. Barr et al. also find evidence that
change lines reuse existing code. However, these prior works
look at changes at small granularity—one or two lines of non-
unique changes. In contrast, we purposefully focus on either
larger non-unique changes (or smaller non-unique changes
but made in similar code context) to avoid unintentional non-
uniqueness. Thus, our work does not take into account smaller
non-unique changes that may be introduced due to program
construct, for example, addition of while loop etc.. We further
characterize change uniqueness w.r.t. before-after relation (non-
unique deletion, non-unique addition, non-unique modification)
and analyze them in developer and architectural dimensions.

Complementary studies further characterized changes based
on their semantics as opposed to structural similarities. For
example, Kawrykow and Robillard found that up to 15.5%
of method updates of a software contains non-essential
changes—cosmetic or behavior-preserving changes [17]. How-
ever, non-unique changes are not necessarily non-essential



TABLE VIII: Example of co-committed non-unique changes in Linux. These changes co-occur 4 times in Linux in different files.

Location: /drivers/i2c/busses/i2c-pxa.c;
Developer: Doug Anderson
Commit Date: 02-28-2013

non-unique pattern 1 non-unique pattern 2
method: at91_add_device_mmc() method: at91_add_device_nand

/* ready/busy pin */
A1. - if (data->wp_pin)
A2. + if (gpio_is_valid(data->wp_pin))
A3. at91_set_gpio_input(data->wp_pin, 1);

/* ready/busy pin */
B1. - if (data->rdy_pin)
B2. + if (gpio_is_valid(data->rdy_pin))
B3. at91_set_gpio_input(data->rdy_pin, 1);

changes; for example non-unique changes in Table I are part
of a feature implementation as well as a bug fix as mentioned
by the developer: “introduce a bandwidth field indicating the
currently usable bandwidth to transmit to the station.... also
fix ieee80211_ht_cap_ie_to_sta_ht_cap() to not ignore HT cap
overrides when MCS TX isn’t supported." Thus, the concept
of essential and unique changes are orthogonal and they could
be combined. For example, one can first extract non-essential
changes and then compute unique changes on top of that data.

Risk Analysis. Fenton and Niel [7], summarize some of the
earlier work, while Hall et. al. [10] summarize the more recent
contributions in this area of research. Lessmann et. al. [22]
and D’Ambros et. al. [6] compare the various risk analysis
approaches using benchmark datasets, to identify the strengths
and weaknesses of each approach. More recently, Menzies et.
al. [25] and Bettenburg et. al. [1] have shown that splitting the
data in smaller subsets before building fault prediction models
is very useful. In this paper we propose a new software metric
for risk analysis based on the uniqueness of change in order
to predict faults in software.

Recommendation System. Recommending possible
changes to programmers to guide software development is
a well researched area [33]. While, some recommendation
system suggest API usages [13], [36] and bug-fixes [20]
based on the previous development history, others recommend
possible code location (file, class, method) that developers
should check associated with a given software task. For
example, by mining evolutionary data of a project, the ROSE
tool [39], [40] and the tool from Ying et. al. [38] identify
software artifacts that often modify together. When developers
edit code, these tools recommend other possible code
locations that developers should change as well, leveraging
the co-evolution in the history of the project.

We further extend the change recommendation system (to
REC-II) by learning from the co-evolution in the history of
the project. Similar to Zimmermann et al. [39], [40], when a
developer is about to commit a code change, REC-II suggests
other non-unique changes that were committed together in the
past. REC-II recommends with 38% to 43% precision and 37%
to 51% recall, on average.

VI. THREATS TO VALIDITY

Threats to construct validity concern the relation between
theory and observation. To detect non-unique changes, we
rely on the effectiveness of widely used clone detection tool
CCFinderX. For the characteristic study of unique changes
and their applications, we use a token threshold value of 50.
Our findings may differ with a different token threshold. To

help readers understand how our results can vary with different
number of tokens, we calculate the extent of uniqueness of
changes with different token sizes in Section III.

Also, for risk analysis in Section IV-A, we assume that a
file commit is error-prone if a bug is fixed in the same file in
a later period. However, it is possible that the error occurred
due to other factors, such as other error-inducing changes in
the same or different files. More advanced techniques like the
SZZ algorithm [21], identifying untangle changes first to get a
more reliable data on bugfix commits [11], etc. can be used to
reduce the impact of this threat. We also assume that a bug is
fixed in a commit if the commit message has a set of keywords.
Although such a technique has been used in past research [26],
other techniques [37] could yield results with lesser noise.

Also, while measuring accuracy of the recommendation
system in Section IV-B, we measure how accurately we suggest
change templates as opposed to actual changes. A template may
differ from the actual change by identifier names and types.
However, we believe existing auto program generation tools
like GenProg [9], Sydit [23], LASE [24], and PAR [18] can
adapt our suggested templates to the relevant change context
and produce more accurate program patches.

External validity concerns generalization of our findings.
In this work, we analyzed C and C++ projects. It is possible
that other languages show different characteristics of changes.
Also, we only studied intra-project uniqueness. In inter-
project settings, the uniqueness characteristics may be different.
However, Nguyen et al. [28] studied repetitive changes within
and across different java projects and reported similar findings.
This indicates our results may still hold in other projects written
in different languages.

VII. CONCLUSION

The source code in software is constantly changed by
developers. In this paper we empirically examined how unique
these changes are, by studying a large number of commits from
both open source and proprietary domains. We find that the
extent of unique changes is a lot more than that of non-unique
changes; although developers frequently commit non-trivial
amount of non-unique changes.

We believe that because there is a considerable number
of non-unique changes to a software, the developers can
be helped in many ways to build better software including
risk analysis, code reviews, recommendation systems, and
automated program repair. To demonstrate the usefulness of
non-unique changes we build two recommendation systems and
a risk analysis system. We intend to examine other scenarios
in the future.
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