
Which Code Construct Metrics are Symptoms of Post
Release Failures?

Meiyappan Nagappan
North Carolina State

University
Raleigh, NC, USA

mnagapp@ncsu.edu

Brendan Murphy
Microsoft Research

Cambridge, UK
bmurphy@microsoft.com

Mladen Vouk
North Carolina State

University
Raleigh, NC, USA
vouk@ncsu.edu

ABSTRACT
Software metrics, such as code complexity metrics and code
churn metrics, are used to predict failures. In this paper we
study a specific set of metrics called code construct metrics
and relate them to post release failures. We use the values of
the code construct metrics for each file to characterize that
file. We analyze the code construct metrics along with the
post release failure data on the files (that splits the files into
two classes: files with post release failures and files with-
out post release failures). In our analysis we compare a file
with post release failure to a set of files without post release
failures, that have similar characteristics. In our compar-
ison we identify which code construct metric, more often
than the others, differs the most between these two classes
of files. The goal of our research is to find out which code
construct metrics can perhaps be used as symptoms of post
release failures. In this paper we analyzed the code construct
metrics of Eclipse 2.0, 2.1, and 3.0. Our results indicate
that MethodInvocation, QualifiedName, and SimpleName,
are the code constructs that differentiates the two classes of
files the most and hence are the key symptoms/indicators of
a file with post release failures in these versions of Eclipse.

Categories and Subject Descriptors
D.2.8 [Software Engineering]: Metrics—Product Metrics

General Terms
Algorithms, Measurement

Keywords
Code Construct Metrics, Post Release Failures, Empirical
Analysis

1. INTRODUCTION
“Bad smells” are symptoms of possible problems in code

that could lead to failures [3]. They indicate where to refac-
tor in order to perform maintenance on a software system.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WETSoM ’11, May 24, 2011, Waikiki, Honolulu, HI, USA
Copyright 2011 ACM 978-1-4503-0593-8/11/05 ...$10.00.

Khomh et.al. [5] defines “bad smells” in code, as poor im-
plementation choices. Fowler and Beck [3] define 22 differ-
ent software structures as indicators of “bad smells”. These
smells are usually detected through metric based rules [6].

In our research we analyze code construct metrics that are
derived from the Abstract Syntax Tree (AST) of the code.
The value that a code construct metric has is the number of
times a particular code construct appears as a node in the
AST. Our research goal is to find out which code construct
metrics can be used as symptoms to detect files with post re-
lease failures. Note that we do not study causation, but just
identify the key symptoms/indicators of post release failures
in files. For this we use an approach similar to identifying
code smells. We analyze the code construct metrics for the
files along with the post release failure data about the files.
We define a file as having a ‘post release failure’ if it was
edited right after the release of a software, and before work
on the next release begins.

In our approach we first collect the code construct metrics
for each file. Then we also find out which files have a post
release failure and which ones don’t. We then characterize
each file with the code construct metrics. In our analysis we
only compare files that have similar characteristics. By sim-
ilar characteristics we mean that the files have similar values
for the respective code construct metrics i.e. if we were to
plot each file, with the code construct metrics as their co-
ordinates, then files with similar characteristics would be,
points in space that are close to each other. We compare
each file with a post release failure, to a set of files that have
no post release failures, but still have similar characteris-
tics (similar values for most of the code construct metrics).
We then identify which code construct metric more often
than the others differs the most between the file a with post
release failure and the files without post release failures.

Motivation : We are interested in identifying which code
construct to examine first when preventively looking for post
release failures. We know that large classes are a“bad smell”
and hence we refactor them first. Similarly we want to iden-
tify which code constructs are symptoms for post release
failures at a file level, so that they can be examined first.

Contributions : Our contributions in this research project
are as follows

• To the best of our knowledge, we are the first to look
at code construct metrics along with the post release
failure data, to identify the code constructs that are
the key symptoms/indicators of post release failures
in files.

• We present a unique approach to determine the code

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WETSoM’11, May 24, 2011, Waikiki, Honolulu, HI, USA
Copyright 2011 ACM 978-1-4503-0593-8/11/05 ...$10.00

65

constructs that are the key symptoms/indicators of
post release failures in files.

• We present initial results for the case study on the
Eclipse metrics data set.

2. OUR APPROACH
Statistical techniques like correlation and regression are

often applied on software metrics in order to describe and
predict defects and failures. In statistical modeling, the first
step is to identify the subset of metrics that are the best pre-
dictors. Usually a correlation technique or principal compo-
nent analysis or stepwise regression are used. On the other
hand a classification algorithm like Support Vector Machines
(SVM), determines which metrics can predict the failures
best, during the training phase. If the prediction is good
then we can infer that the chosen metrics may be good indi-
cators of future failures. We can effect a similar metric selec-
tion to identify which subset of the code construct metrics
might best predict the post release failures. But the prob-
lem in using these techniques is that we are analyzing post
release failures at file level. Since the difference in the num-
ber of files without post release failures and files with post
release failures can be great, the prediction/classification al-
gorithms have a high precision but poor recall rate [7], i.e.
they are not able find files with post release failures accu-
rately. Therefore we cannot use these methods to identify
which code constructs might be symptomatic of post release
failures.

In our approach, use a modified version of the SVM train-
ing approach. In the supervised learning step of SVM, we
provide as input a set of marked examples with values for all
metric dimensions. The marking signifies which of the two
possible classes each example belongs to. The SVM training
algorithm builds a SVM model that determines which class
a new example (with values for all the dimensions) belongs
to. In a SVM model, each example in the input (in our case,
a file) is a point in a multidimensional space. The points in
the multidimensional space of the model are mapped so that
the examples of each category (failure and non-failure) are
as far as possible. Then when we examine a new example,
it is simply plotted in this space and depending on which
group of points it is closest to, the prediction of which class
it belongs to is made.

We use the same multidimensional space view. If we are
collecting M code construct metrics about each file, then our
space is an M-Dimensional space. In our space, each dimen-
sion is a particular code construct metric. Then each point
in the space is a particular file. The mth code construct
metric of a file is the mth coordinate of the point in the M-
Dimensional space. For each of these points that represent
a file with no post release failure, we determine the S clos-
est points that represent files with no post release failures.
This is where we differ from the SVM training algorithm.
We don’t consider all the points at the same time. Then we
compare the metric value of the file with post release failure
with each of the S closest files with no post release failures.
We determine which metric differs the most and sort them
in descending order of difference value to determine which
metrics can help in differentiating a file with post release
failure from a file without a post release failure.

Thus we examine each file with a post release failure and
compare it only against the files with no post release failures
that are the closest. We do this because we want to compare

the metrics of similar files. Files that are close to each other
in the M-dimensional space are files with similar coordinate
values in their respective dimensions (in this case metric
values). Thus we hypothesize that the metrics that differs
the most are the likely symptoms of the post release failures
since the other metrics are similar in value between the two
classes of files. Since the absolute values of some metrics are
much greater than the absolute values of others, this can
influence the results when we are calculating difference in
their values. Therefore we first need to normalize the metrics
with respect to each file. Below is a formal description of
how we determine and rank the code constructs that would
indicate a post release failure.

1. Collect the M code construct metrics about the N files
we are examining, and normalize them with respect to
each file. Normalized code construct metric = (Actual
code construct metric value for a file)/(Sum of all the
code construct metric values for that file). Now plot
the normalized values in an M-Dimensional space.

2. We mark each point as a file with post release failure
or a file without post release failures. If we have N
files, and k of them have post release failures, then let
l = N − k be the number of files without post release
failures.

3. For each file ki, of the k files with post release failures,
do:

(a) Calculate the distance from ki to each of the l files
with no post release failures. Distance between
ki, the ith file with post release failures and lj ,
jth file with no post release failure is,
dij =

√
(mj1 −mi1)2 + ... + (mjM −miM)2

where mix is the xth code construct metric of the
ith file with post release failures, and mjx is the
xth code construct metric of the jth file with no
post release failures.

(b) Determine the S closest points of the set of points
l, that represent files with no post release failures
to the point ki, that represents the ith file with
post release failures.

(c) Calculate the difference in each of the M code
construct metric values between each of the S files
and the file ki. This is the distance between each
of the S points and the point ki along each of the
M-dimensions.

(d) Determine the top R metric differences (distance
along the corresponding axis), for each (file with
no post release failure, file with post release fail-
ure) pair. Note that we calculate this only for the
S closest files to the point ki.

4. Thus the top R code construct metric differences for
each of the k files with post release failures and its S
neighbors are calculated.

5. Now count how many times each metric is in the ranks
1..R

6. For each of the ranks, Ri , with 1 ≤ i ≤ R, we de-
termine the code construct metrics with the top 5 fre-
quencies.

66

7. We then conjecture that these metrics are the most
likely causes of the post release failures as more often
than others they are the metrics that differ the most
between files with post release failures and files with
no post release failures.

3. RESULTS AND DISCUSSION
We analyzed the code construct metrics of Eclipse 2.0,

2.1, and 3.0 collected by Zimmermann et.al. [7]. In their
dataset they had collected a total of 200 metrics about each
file in the 3 versions of Eclipse IDE. The first 2 of those
metrics were how many pre-release and post release failures
were there for each file. They calculated post release by
identifying if the file was edited right after the release before,
work for the next release began. The assumption is that in
this time window, any changes made to the code is to fix
post release failure. Thus they can keep track of how many
post release failures were fixed in each file. We just need the
information if a file had a post release failure or not. The
next 31 metrics were code complexity metrics. We did not
analyze them. The next 82 metrics collected about each file
is the code construct metrics. This was collected by mining
the Abstract Syntax Tree (AST) of the code. Each construct
is a node in the AST. Thus they increment the count of a
specific code construct if the node is present in the AST of
that file. The next metric has the total number of nodes
in the AST of a file. The next and last 82 metrics are the
normalized values of the 82 code construct metrics. The
normalization was done with the total number of nodes in
the AST of file as a reference.

We then applied our approach to the 3 Eclipse datasets.
The values of the parameters are M = 82 (since there were
82 code construct metrics), S = 12 (we examined 12 files
with no post release failures in the neighborhood of each
file with a post release failure), and R = 10 (we extracted
the top 10 metrics of each file with post release failures that
were the most different when compared to the each of the S
files with no post release failures in he neighborhood). The
higher the value of S, the more files in the neighborhood
we would compare. In our case there was no difference in
the results when S was 12 or more. Hence we just report
the results for S = 12. The total number of files in Eclipse
versions 2.0, 2.1, and 3.0 are 6729, 7888, 10593 respectively.
The number of files with post release failure in Eclipse ver-
sions 2.0, 2.1, and 3.0 are 975, 854, 1568 respectively. We
also record the frequency of each metric in each of the R
ranks and sort them in descending order.

In Table. 1, Table. 2, Table. 3, we present the results for
Eclipse version 2.0, 2.1, and 3.0 respectively. Each table has
3 sets of results. One each for ranks 1, 2, and 3. By Rank
1, we mean that those metrics had the greatest difference
when files with post release failures and the files without post
release failures in the neighborhood were compared. Rank 2
are the metrics with the second most distance and so on. We
report the metrics that have the top 5 frequencies descending
order for each rank. We collect the frequencies of each metric
in each rank. If we were to sum up the frequencies in each
rank, the total would be equal to the product of the number
of files with post release failures and the number of files
without post release failures we examine in the neighborhood
(S). In our case as we said earlier S was 12. Although we
collect the information about the top 10 ranks (R = 10),

we report the results only for the top 3 ranks due to space
constraints in the paper.

From Table. 1 we can see that NORM MethodInvocation
was in rank 1, 1021 times. It was also the highest fre-
quency in ranks 2 and 3 too. This is the code construct
that involves a function call. From Table. 2 we can see that
NORM QualifiedName, and NORM SimpleName are alter-
natingly the highest and second highest frequency metrics
in ranks 1 and 2 respectively. In Table. 3 we can see similar
results for Eclipse 3.0.

We also looked at what metrics were never in the top 10
ranks at all in order to find the code constructs that were
least likely to be the symptoms a post release failure. We
wanted to do this to see if these were indeed, code constructs
which we don’t expect to be symptoms of a failure. Some of
these code constructs are: NORM LineComment,
NORM BlockComment, NORM TagElement,
NORM TextElement, NORM EnumDeclaration,
NORM NormalAnnotation, NORM MarkerAnnotation,
and NORM SingleMemberAnnotation. As we can see com-
ments, Enums and annotations are all the least likely code
constructs to be symptoms of post release failures. This is
something we expect from these code constructs.

The actual explanation of what each of the code construct
metrics (both the ones that are most likely and least likely
to cause post release failures) in the three tables and the
above discussion, stand for can be determined from the doc-
umentation for Eclipse AST.

4. RELATED WORK
There has been extensive research in finding out the exact

reason for post release failure. These techniques include but
are not limited to debugging using run time monitoring [1],
statistical debugging via path profiling [2], or stack traces [4].
These are but a small subset of the techniques to determine
the root cause of failures.

Fowler and Beck in the chapter on ‘Code Smells’ [3], de-
scribe the different code structures that are indicative of bad
smells in code. A bad smell in the code does not require that
it be refactored, but just that someone should take a look
at that particular code structure. On similar lines we want
to identify which code constructs should software engineers
take an extra look at and use with caution. To the best of
our knowledge, we are the first to look at code construct
metrics and post release failure data to find which code con-
struct will be a more likely symptom to files that have post
release failure.

5. CONCLUSIONS AND FUTURE WORK
Metrics are often used to predict defects and post release

failures in software. In our research we use the information
about which files had post release failures and which files
didn’t have post release failures along with code construct
metrics to determine which code constructs were symptoms
to files with post release failures. Since the number of files
with post release failures was much smaller than the number
of files that did not have post release failures we couldn’t use
normal statistical techniques such as correlation or regres-
sion. We proposed a new approach which is a modification
of the SVM training algorithm. We compare files that are
similar by examining files with post release failures with the
files with no post release failures in the neighborhood only.

67

Table 1: The Top 5 Highest Frequency Metrics and their Frequency in Rank 1, 2, and 3 for Eclipse 2.0
Rank 1 Rank 2 Rank 3

Metric Name Freq Metric Name Freq Metric Name Freq
NORM MethodInvocation 1201 NORM MethodInvocation 745 NORM MethodInvocation 539

NORM QualifiedName 1150 NORM QualifiedName 678 NORM ReturnStatement 532
NORM SimpleName 1028 NORM SimpleName 658 NORM QualifiedName 520
NORM ArrayType 675 NORM InfixExpression 621 NORM InfixExpression 513

NORM Modifier 572 NORM PrimitiveType 593 NORM PrimitiveType 511

Table 2: The Top 5 Highest Frequency Metrics and their Frequency in Rank 1, 2, and 3 for Eclipse 2.1
Rank 1 Rank 2 Rank 3

Metric Name Freq Metric Name Freq Metric Name Freq
NORM QualifiedName 1216 NORM SimpleName 849 NORM SimpleName 506
NORM SimpleName 943 NORM QualifiedName 667 NORM ExpressionStatement 491

NORM MethodInvocation 933 NORM MethodInvocation 596 NORM MethodInvocation 489
NORM Modifier 653 NORM SimpleType 516 NORM SimpleType 467

NORM InfixExpression 572 NORM InfixExpression 501 NORM InfixExpression 451

Table 3: The Top 5 Highest Frequency Metrics and their Frequency in Rank 1, 2, and 3 for Eclipse 3.0
Rank 1 Rank 2 Rank 3

Metric Name Freq Metric Name Freq Metric Name Freq
NORM QualifiedName 1737 NORM SimpleName 1159 NORM MethodInvocation 881

NORM MethodInvocation 1631 NORM MethodInvocation 1125 NORM Block 875
NORM SimpleName 1558 NORM QualifiedName 1005 NORM Modifier 846

NORM Modifier 1161 NORM Modifier 931 NORM Javadoc 831
NORM Javadoc 1000 NORM Javadoc 926 NORM QualifiedName 830

We determine which metric most differentiates these two
files in a small neighborhood. Such an analysis can pro-
vide developers and testers vital information on which code
construct to inspect further. We did a study on the code
construct metrics collected about Eclipse 2.0, 2.1, and 3.0
to determine the code constructs that were the key symp-
toms of the files with post release failures in these versions of
Eclipse. We determined that NORM MethodInvocation,
NORM QualifiedName, and NORM SimpleName are the
three constructs that are most different between the two
classes of files. Hence they are the most identifiable symp-
tom of a file with a post release failure. These results are not
meant to discourage developers from using these code con-
structs but rather to take due precaution when using those
code constructs.

As part of future work we want to inspect the source code
repository for these versions of Eclipse to determine where
the changes were made to fix post release failures. This will
allow us to verify if the bug fixes were indeed in the code
constructs that we identified as symptoms of files with post
release failures. We also intend to subdivide these code con-
struct metrics into groups that are similar and perform sim-
ilar analysis in each sub group. For example we could group
all the loop constructs to determine which among them is
the key symptom in a file with a post release failure.

6. ACKNOWLEDGMENTS
We would like to thank Dr. Aditya Nori, and Dr. Thomas

Zimmermann of Microsoft Research for their valuable inputs
in this project. This research was also funded in part by the
DOE grants DE-FC02-ER25809, and DE-AC02-05CH11231.

7. REFERENCES
[1] D.C. Arnold, D.H. Ahn, B.R. de Supinski, G.L. Lee,

B.P. Miller, M. Schulz, “Stack Trace Analysis for Large
Scale Debugging,” Parallel and Distributed Processing
Symposium, 2007. IPDPS 2007. IEEE International ,
vol., no., pp.1-10, 26-30 March 2007

[2] T.M. Chilimbi, B. Liblit, K. Mehra, A.V. Nori, K.
Vaswani, “HOLMES: Effective statistical debugging via
efficient path profiling,” Software Engineering, 2009.
ICSE 2009. IEEE 31st International Conference on ,
vol., no., pp.34-44, 16-24 May 2009

[3] M. Fowler, “Refactoring: Improving the Design of
Existing Code,” 1st ed. Addison-Wesley, June 1999.

[4] S. Hangal, M.S. Lam, “Tracking Down Software Bugs
Using Automatic Anomaly Detection,” 24th
International Conference on Software Engineering,
2002, pp. 291-300

[5] F. Khomh, M.D. Penta, and Y.G. Gueheneuc, “An
Exploratory Study of the Impact of Code Smells on
Software Change-proneness,” 16th Working Conference
on Reverse Engineering, 2009, pp. 75-84.

[6] R. Marinescu, “Detection strategies: Metrics-based
rules for detecting design flaws,” in Proceedings of the
20th International Conference on Software
Maintenance, 2004, pp. 350-359.

[7] T. Zimmermann, R. Premraj, A. Zeller, “Predicting
Defects for Eclipse,” Third International Workshop on
Predictor Models in Software Engineering
(PROMISE’07: ICSE Workshops 2007), pp.9-16, 2007.

68

