Creating Operational Profiles of Software Systems by
Transforming their Log Files to Directed Cyclic Graphs

Meiyappan Nagappan
North Carolina State University
Raleigh, NC, USA

mnagapp@ncsu.edu

ABSTRACT

Most log files are of one format - a flat file with the events
of execution recorded one after the other. Each line in the
file contains at least a timestamp, a combination of one or
more event identifiers, and the actual log message with in-
formation of which event was executed and what the values
for the dynamic parameters of that event are. Since log files
have this trace information, we can use it for many purposes,
such as operational profiling and anomalous execution path
detection. However the current flat file format of a log file
is very unintuitive to detect the existence of a repeating
pattern. In this paper we propose a transformation of the
current serial order format of a log file to a directed cyclic
graph (such as a non-finite state machine) format and how
the operational profile of a system can be built from this
representation of the log file. We built a tool (in C++),
that transforms a log file with a set of log events in a serial
order to an adjacency matrix for the resulting graphical rep-
resentation. We can then easily apply existing graph theory
based algorithms on the adjacency matrix to analyze the log
file of the system. The directed cyclic graph and the analy-
sis of it can be visualized by rendering the adjacency matrix
with graph visualization tools, like Graphviz.

Categories and Subject Descriptors

D.2.5 [Software Engineering]: Testing and Debugging—
Testing Tools, Tracing

General Terms
Algorithms, Measurement, Reliability

Keywords
Log Files, Directed Cyclic Graphs, Operational Profiling

INTRODUCTION

Log files keep a record of what happened in a system.
Software systems often write details about what event was

1.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

TEFSE’11, May 23, 2011, Waikiki, Honolulu, HI, USA

Copyright 2011 ACM 978-1-4503-0589-1/11/05 ...$10.00

54

Brian Robinson
ABB Corporate Research
Raleigh, NC, USA
brian.p.robinson@us.abb.com

completed (or not) in the log file. Most log files at least col-
lect the following details: (a) The ‘log message’ which con-
tains information about the particular execution instance of
an event. The static part of the message is the same across
multiple instances of the same event, whereas the dynamic
part of the message may be the same/different between mul-
tiple instances of that event; (b)The system also collects the
time at which this event was executed. Additionally some
systems collect an identifier, to identify which event was ex-
ecuted, and record it in the log file.

The information collected in the log file is often used for
diagnostic purposes. If a system failure occurs, the logs for
that time period can be inspected to see which events were
executed by the system, and what were the values for the
dynamic information in those events. Since each log line can
be traced back to a particular line of code where the method
to log this information was called, we know what events were
executed. From the dynamic part of the log line, we can de-
termine values for variables in the code and the branches
taken by that particular instance of execution. For these
reasons the information in the log file is collected in a seri-
ally ordered flat text file. Thus a log file is a collection of
log lines, with each of them having information about a sin-
gle event, its time of execution and the dynamic parameter
information. Note that each log line may not physically be
in one line in the log file. It may span across multiple lines,
but the format in which most systems collect information
in a log file allows the distinction of two adjacent log lines.
Hence we use the term log line in this paper as a unit of
information in a log file.

Log files can also be used for operational profiling and
detecting the root causes of anomalous system executions.
In operational profiling, we determine how many times each
subset of events occur in the log file. Anomaly detection
involves, examining the alternate paths of execution, to de-
termine what the root cause of the anomaly might be. The
current serial ordering of events in a log file is very unin-
tuitive to perform either of these analyses. When we open
the log file in an editor, we can view maybe 60-70 lines at
any one point. Repeating patterns might have hundreds
or thousands of events between them. Hence it is difficult
to compare, two sets of events that are separated by other
events. For example if a specific sequence of 3 events occurs
10% of the times in a log file with 100,000 events, then that
is 30,000 (3 x 10%of 100,000) events that we have to look
through to make that conclusion. Manual inspection when
the frequency is this high is inefficient. Also the remaining
70,000 events will be in between these repeting patterns.

In order to solve this issue, we propose a transforma-
tion of the serially ordered log file to a Directed Cyclic
Graph(DCG). This is similar to a finite state machine. The
advantages of visualizing the log file as a graph are:

1. Only the information needed for the analysis is main-
tained and condensed into a compact view of the log
file.

2. It is easier to identify patterns or anomalies in the
graph.

3. It is easier to build analysis tools on the graph repre-
sentation as opposed to the serial representation. For
example, in anomaly detection, all that we need to do
is use an already existing software library of the graph
theory algorithm for finding all the paths between two
nodes of a graph, and apply it on our DCG represen-
tation of the log file.

1.1 Contributions

Our contributions in this research project are as follows:

e Developed the transformation of a log file with serial
events to a DCG.

e Built the tools required for this transformation in C++.

The graph is represented as an adjacency matrix. We
can convert this matrix to a DOT file that can then
be rendered as an image by the Graphviz tools [1].

e Built tools to analyze the DCG representation of the
log file. We then present the results to the users by
highlighting the areas of interest.

e Applied it on real log files from the Virtual Comput-
ing Lab [2], a cloud management application at North
Carolina State University.

2. OUR APPROACH

In this section, we present our transformation of a log
file with a set of serial events to a DCG. In the serial or-
der each event is important as a stand alone event. But
in the DCG representation, the importance shifts to adja-
cent pairs of events. We do this type of a transformation
because we want to record the order in which events hap-
pened. Therefore each unique event in the log file is repre-
sented by a unique node in the DCG. An edge exists from
one node(head) to another (tail) if there is an occurrence of
the event representing the tail node immediately after the
event representing the head node in the original log file. For
example if event B follows event A in the log file, the there
is directed edge from node A to node B in the DCG. The
edges are labeled with the number of times this transition
has occurred. For example if B occurs a hundred times after
A in the log file, then the edge from node A to node B in
the DCG is labeled with 100. Typically we keep track of
the actual count when building the graph. When we render
the graph we display the percentage value as the label. This
percentage is with respect to the total number of transitions.
We could also store the dynamic parameter information in
each log line as a list along the edges. We now present the
steps involved in this transformation.

1. Input: Original log file with IV log lines, Output: Ad-
jacency matrix representation of the DCG form of the

log file.
2. First pass through the N lines of the log file: Parse the
log message in each log line of the log file as static event

55

information (or event identifier) and dynamic param-
eter information [7]. Assign an identifier (ID) to each
unique event (defined by the static information in the
log message in that log line) in the log file, and leave
the dynamic parameter information as it is. Simulta-
neously create and update an index file with the (ID,
event) pairs as new ones are detected in the log file.
Let the number of indexes in total be M.

3. Create the adjacency matrix G, an M x M matrix of
label objects. Each object has two members (in our im-
plementation, but it could be more than that). namely
count(Integer) and param(Listofstrings)

4. Second pass through the N lines of the log file: If 7 is
the current line that we are inspecting, then find the
event ID in line ¢ and i+ 1. Then retrieve the object O,
at GleventID(i)][eventI D(i+ 1)]. Increment the inte-
ger O.count. Add the dynamic parameter information
to list O.param.

5. Once the entire log file has been transformed into the
adjacency matrix, we build the DOT file for the ma-
trix. This can be viewed by the Graphviz tools [1].

Alternately, we could apply analysis algorithms, like the op-
erational profiling algorithm (explained in detail in Section
2.2.1), on the adjacency matrix G, and highlight the results
when the graph is rendered.

2.1 Complexity Analysis

The complexity of this transformation is linear in the size
of the log file, i.e. O(N), where N is the number of lines in
the log file. Step 2 makes a single pass through the log file,
and examines each log line. Hence the time complexity of
step 2 is O(N). In step 5 we inspect each line of the log file.
For each line we do an array access in the two-dimensional
adjacency matrix G[M][M]. Since array access takes con-
stant time, this step too is O(N). Step 6 iterates through
each element of the adjacency matrix G[M][M]. Thus it is
of the order O(M?). Since M << N, M? < N. Hence the
order of time complexity for the transformation is O(NNV), or
linear in the size of the log file. The two data structures we
create from the log file with NV log lines is the index of size
O(M), and the adjacency matrix G[M][M] of size O(M?).
Since M? < N, the space occupied by the output is much
smaller than the input log file.

2.2 Example

We now present a small example to illustrate our trans-
formation algorithm. Let the application from which we are
collecting logs be used to move a file from one computer in
the network to another computer. Before moving it splits
the file into chunks of size 10 MB each in the source com-
puter , moves each of these chunks and recombines these
chunks into the original file at the destination computer.
The log events for moving a file ‘A’ of size 50 MB is below.

Located File A on 127.0.0.1

File A is 50 MB in size

File A is split into 5 chunks

Move chunk 1 from 127.0.0.1 to 127.0.0.2
Chunk 1 moved from 127.0.0.1 to 127.0.0.2
Move chunk 2 from 127.0.0.1 to 127.0.0.2
Chunk 2 moved from 127.0.0.1 to 127.0.0.2
Move chunk 3 from 127.0.0.1 to 127.0.0.2
Error in moving chunk 3

@6.25%, 1 /?6.25%,

Figure 1: Directed Cyclic Graph of the Log File

Table 1: adjacency matrix G[M][M]
1D 4

O O| O O O O] O O S =
O O| O O] O O| O O | N
O O| O O O O O —| S| W
O| O | O Of | O O S| U
O O| O O O —| O O S| O
O O| O —| O O] O O S|
O O| O O | O] O O S| 0o
O | O O] O O| O O O ©

O 00| | O U | WO D] |
OO OO = O] O] ©

Retrying:Move chunk 3 from 127.0.0.1 to 127.0.0.2
Chunk 3 moved from 127.0.0.1 to 127.0.0.2

Move chunk 4 from 127.0.0.1 to 127.0.0.2

Chunk 4 moved from 127.0.0.1 to 127.0.0.2

Move chunk 5 from 127.0.0.1 to 127.0.0.2

Chunk 5 moved from 127.0.0.1 to 127.0.0.2
Combining 5 chunks in 127.0.0.2 to form file A
Moved file A from 127.0.0.1 to 127.0.0.2

The index file for this part of the log file will be as follows:

Event ID: Event

: Located File * on *

File * is * MB in size

File * is split into * chunks

Move chunk * from * to *

Chunk * moved from * to *

Error in moving chunk *

Retrying:Move chunk * from * to *
Combining * chunks in * to form file *
Moved file * from * to *

O 00 ~NO O WN =

The events in the log file are mapped to their corresponding
event IDs:1, 2, 3,4,5,4,5,4,6,7,5,4,5,4,5,8,9.

The dynamic parameter information in each event is masked
by the symbol “*’. The adjacency matrix G[M][M] of the
graph is shown in Table. 1. The graph generated from this
transformation and rendered by the graphviz tool is shown
in Fig. 1. Each node is a unique event. An edge between
nodes 1 and 2 signifies that the event 2 (File A is 50 MB in
size) appears after event 1 (Located File A on 127.0.0.1) in
the log file. The labels on the edges have the actual count
and the percentage with respect to the total number of tran-
sitions, namely 16. Hence the transitions that happen once
have 6.25%, and the transition from node 4 to 5 and from
node 5 to 4, have apercentage value of 25% since they occur
four times each.

2.2.1 Operational Profiling

Operational profiling involves determining which sequences
of actions are repeated many times (or few times). Opera-

tional profiles are often used to prioritize regression testing
efforts. Using our adjacency matrix representation of the log
file we can determine the operational profile of the system
as shown in the steps below.

Suppose the number of lines in the log file is N (implies
we have N —1 transitions in the graph), and we want to find
the sequence of events that occur at least X% of the time
then:

Fori<-1to M

Forj<-1toM
if (G[é][j] * 100)/(N — 1) > X Then
Highlight the nodes 7 and j in the graph.

Therefore in our example, if we were to determine the top
20% of the event sequence combinations, then nodes 4 (Move
chunk * from x to %) and 5 (Chunk * moved from = to
) are highligted because they each occur 25% of the times.
If we want to find the least frequent sequences then we use
the condition, (G[i][j] * 100)/(N — 1) < X, in the if block.
Similarly if we want to find the frequency of a given set of
sequences, we can just iterate through the adjacency matrix
and get the percentage of these transitions. Since each of
these analyses requires the inspection of each element in the
adjacency matrix, the order of time complexity is O(M2).
Since M? < N (as explained in Section 2.2), the analysis is
often of the order O(N) (since the order to time complexity
to build the graph is O(N)).

Hassan et.al. [5], and Nagappan et.al [8] propose other log
file analysis approaches that build the operational profile of
the system. Hassan et.al.’s [5] approach is not a fully au-
tomated approach (requiring manual intervention) and can
determine only the most frequent set of events. Nagappan
et.al.’s approach builds an operational profile that has the
most frequent and least frequent sequences. However in or-
der to do this, it determines the frequency of all set of events.
This can get computationally prohibitive if the log file has
many events or many non repeating set of events. Our ap-
proach on the other hand is fully automated, fast and can
produce the results only for the query we asked. Thus we can
create an operational profile for the system to get most fre-
quent sequence of events, least frequent sequence of events,
and the frequency of a specific sequence of events.

3. RESULTS AND DISCUSSION

We performed a case study on a log file from Virtual Com-
puting Lab [2], a cloud computing management application
at North Carolina State University. VCL is a system used by
more than 40,000 students and manages over 3000 proces-
sors. It is written in Perl and python and collects execution
information in log files by calling a logging method written
in Perl, with the log message that contains the event in-
formation. We used a log file that was 465.70 MB in size
having 2,595,258 events. This was log information collected
over one week. The index file to this log file had 113 events
(implies there were 113 unique events in the log file which
had over 2.5 million log lines). The analysis was run on an
eight core Intel Xeon CPU at 2 GHz, with 2 GB of memory.
Our implementation was done in C++ and compiled with
g++ version 4.1.2 with no compiler options. We also did
not write a parallel implementation to use the multicore fa-
cility. We abstracted each log line in the file to one of these
113 IDs. Then we build the adjacency matrix of the log file
in 6.26 seconds. We then convert the graph to a DOT file
and render it using Graphviz [1] tools. We don’t include the

image for it in the paper due to space constraints. But this
graph is definitely easier to explore than a 465 MB file.

We then applied the operational profiling algorithm to the
adjacency matrix with a threshold value of 15%. We chose
the value of 15%, as it focused the analysis on the largest
two sequences in the log file. We traced these two sequence
of events back to where they originate in the source code.
They correspond to the VCL state intialization and VCL
image request actons. These were expected to be the most
frequent usage scenarios.

Given that there were 2.5 million events in total, this im-
plies that these two pairs of events occurred almost 375,000
times each. Manually searching for them through the file
and getting the frequency is extremely inefficient when the
frequency is so high. Using the ‘search’ facility in an text
editor can only get the frequency of single events. We de-
tected two pairs of events as the most frequent sequences
because in the log file that we analyzed they were the most
frequent sequences. However, if the most frequent sequence
was a multi-event sequence, we still would have found it be-
cause our approach is not dependent on the length of the
sequence of events.

We were able to reduce the size of the log file from a 465
MB flat file to a 104 KB DOT file or 20.3 MB image(gif
format) file. This is because we condense and collapse all
redundant information to a more compact form and retain
only the information that we need for the analysis in ques-
tion. For operational profiling we needed just the event ID,
and so we retained only that part of the log line. The graph-
ical representation of the log file definitely has some loss in
information (the time stamp and dynamic parameter infor-
mation not retained when we build the operational profile)
and hence we cannot collect the log file itself in that format.

4. RELATED WORK

There is extensive research on operational profiling [5][8],
and debugging of systems [3][4] using information collected
as log files or execution traces. Also the concept of viewing
the execution of software as state machines is not new. In
their literature survey on software model checking [6], Jhala
and Majumdar report the different ways to build state mod-
els of software to improve testing efforts. These models are
built statically from the code or from traces collected dur-
ing testing. In our paper we present a way to transform
the log files collected from a production system to the ad-
jacency matrix representation of a graph. We then apply
existing graph theory algorithms, through their correspond-
ing software libraries, on the adjacency matrix to perform
operational profiling and anomaly detection and visualize
them using existing tools like Graphviz [1].

5. CONCLUSIONS AND FUTURE WORK

Log files have mostly been a flat text file with a set of ex-
ecution events written in the log file in a serial order. Each
log line in the log file is an execution event. Although this is
the format required to archive the execution of the system,
it is not the format that is most convenient for analysis, such
as operational profiling or anomaly detection. A more in-
tuitive format for such analysis is a Directed Cyclic Graph
(DCG). In this paper we proposed such a transformation
for the log files. We performed a complexity analysis on this
transformation algorithm and found the time complexity to

57

be of O(N). The graphical form is more efficient for build-
ing analysis (operational profiling) tools, because we can use
existing graph theory algorithms and the software libraries
that exist for those algorithms. In this paper we demonstrate
how operational profiling can be done on the adjacency ma-
trix representation of the DCG. Once this analysis is done
we can trace the log events back to the source code to deter-
mine which execution path is used frequently. We illustrate
the operational profiling with the help of a small example.
We also analyzed a large log file (465 MB in size with more
than 2.5 million events), from the Virtual Computing Lab
system at North Carolina State University to see if our ap-
proach scaled. The transformation, rendering, and analysis
took merely seconds to finish.

As part of future work, we plan to apply this approach
to log files from a production system at ABB Inc. We also
want to detect anomalous execution paths by analyzing the
DCG representation of the log file. We plan to adapt the
graph theory algorithm that determines all paths between
two nodes. Using this adapted algorithm we will be able
to find the different execution paths between the starting
and ending events of a particular use case. Our hypothesis
is that the path that was executed fewer times will provide
vital information to finding the root cause of the anomaly.

6. ACKNOWLEDGMENTS

This research was done as part of an internship at ABB
Corporate Research. We would like to thank Dr.Mithun
Acharya and Patrick Francis of ABB Corporate Research
and Dr.Mladen Vouk of North Carolina State University for
their insights on the project, and Aaron Peeler of the Virtual
Computing Lab for providing the log files.

7. REFERENCES

[1] http://www.graphviz.org/ (last accessed 01/25/2011)
[2] http://vcl.nesu.edu/ (last accessed 01/25/2011)

[3] T-M. Chilimbi, B. Liblit, K. Mehra, A.V. Nori, k.
Vaswani,“HOLMES: Effective Statistical Debugging
via Efficient Path profiling,” 30th Intl Conference on
Software engineering, 2009, 34-44.

Q. Fu, J. Lou, Y. Wang, J. Li, “Execution Anomaly
Detection in Distributed Systems through
Unstructured Log Analysis,” 9th Intl Conference on
Data Mining, 2009, pp.149-158

A.E. Hassan, D.J. Martin, P. Flora, P. Mansfield, and
D. Dietz. 2008. An Industrial Case Study of
Customizing Operational Profiles Using Log
Compression. 30th Intl Conference on Software
engineering, 2008, 713-723.

R. Jhala and R. Majumdar, “Software Model
Checking,” ACM Comput. Surv. 41, 4, Article 21
(October 2009), 54 pages.

M. Nagappan, and M.A. Vouk, “Abstracting Log
Lines to Log Event Types for Mining Software
System Logs,” 7th Working Conference on Mining
Software Repositories, 2010, pp. 114-117.

M. Nagappan, K. Wu, and M.A. Vouk, “Efficiently
Extracting Operational Profiles from Execution Logs
Using Suffix Arrays”. 20th International Symposium
on Software Reliability Engineering, 2009, 41-50.

[4]

8

