
Abstracting Log Lines to Log Event Types for Mining Software System Logs

Meiyappan Nagappan
Department of Computer Science
North Carolina State University

Raleigh, USA
Email: mnagapp@ncsu.edu

Mladen A. Vouk
Department of Computer Science
North Carolina State University

Raleigh, USA
Email: vouk@ncsu.edu

Abstract—Log files contain valuable information about the
execution of a system. This information is often used for
debugging, operational profiling, finding anomalies, detecting
security threats, measuring performance etc. The log files
are usually too big for extracting this valuable information
manually, even though manual perusal is still one of the more
widely used techniques. Recently a variety of data mining and
machine learning algorithms are being used to analyze the
information in the log files. A major road block for the efficient
use of these algorithms is the inherent variability present in
every log line of a log file. Each log line is a combination of a
static message type field and a variable parameter field. Even
though both these fields are required, the analyses algorithm
often requires that these be separated out, in order to find
correlations in the repeating log event types. This disentangling
of the message and parameter fields to find the event types
is called abstraction of log lines. Each log line is abstracted
to a unique ID or event type and the dynamic parameter
value is extracted to give an insight on the current state of
the system. In this paper we present a technique based on a
clustering technique used in the Simple Log file Clustering Tool
for log file abstraction. This solution is especially useful when
we don’t have access to the source code of the application
or when the lines in the log file do not conform to a rigid
structure. We evaluated our implementation on log files from
the Virtual Computing Lab, a cloud computer management
system at North Carolina State University, and abstracted it
to 727 unique event types.

Keywords-log file abstraction; clustering;

I. INTRODUCTION

Software systems collect information about their activity
in log files. The term ‘to log’ comes from making entries
in a logbook to keep track of activities completed. The
information in the log files, called logs, consists of the start
or end of events or actions of the software system, state
information and error information. Each log line typically
contains date and time information, user information, ap-
plication information, and event information. Logs are often
collected for system monitoring, system debugging and fault
diagnosis. Numerous log file analysis tools and techniques
are available to carry out a variety of analyses. Insights
of varying degrees are achieved by log file analysis. These
include but are not limited to, fault detection by monitoring,
fault isolation [5], operational profiling [6] etc. Tools like
Splunk [1], and Swatch [3], are used to monitor log files.

Splunk is a log management tool, and Swatch is a log
monitoring tool.

The users of log files either manually look for a specific
piece of information in the log file or apply an analysis
algorithm to mine information from it. In the latter case the
accuracy of the results produced are highly dependent on
the variability present in log files. Each line in a log file is a
combination of a static message type and variable parameter
information. For eg.
Request data from 127.0.0.1 to 127.0.0.2
The static fields of the above example are ‘Request data
from’ and ‘to’. The parameters in the above example are
‘127.0.0.1’ and ‘127.0.0.2’. The parameters change at run
time and may be different in each instance of the above
example in the log file, i.e. the parameter can be any IP
address. Hence two instances of the same message will look
different because of the different IP address in them. But the
same line of code essentially has executed. The separation
of the static field from the dynamically changing parameter
field is called log file abstraction. Thus in the above example
we would separate the log line into two fields:
Message Type: Request data from * to *.
Parameter Fields: 127.0.0.1, 127.0.0.2
Log file analysis techniques like operational profiling [6],
fault isolation [5], system problem detection [9] etc, operate
on the abstracted log files. In each of the above techniques,
each log line in the log file is abstracted to a corresponding
integer ID. Then the analysis is carried on the set of integers.
In most of the techniques the abstraction itself is done
by regular expressions. The abstraction techniques usually
are used to build these regular expressions. The result of
abstraction techniques are a set of regular expressions and
corresponding IDs. The log lines in the log files can then
be matched to these regular expressions and the ID for the
best match is used for each line in the log file.

A. Contributions

1) A study of the existing abstraction techniques and their
advantages and disadvantages.

2) Our abstraction algorithm which tries to address the
issues of the other algorithms and

3) The evaluation of our algorithm

MSR 2010978-1-4244-6803-4/10/$26.00 © 2010 IEEE 114

II. RELATED WORK

A number of techniques are available for log file abstrac-
tion. Traditionally the users of log file analysis tools come
up with the regular expressions for the abstraction. This can
be based on their knowledge of the system, or mining the
source code for it [9], or data mining techniques [8] or hybrid
of the set of above techniques. One such hybrid technique
is proposed by Jiang et al [4]. In this section we discuss in
more detail the research by Xu et al. [9], Vaarandi and his
tool, SLCT [8], and Jiang et al [4].

Xu et al. [9] in their research on mining console logs for
problem detection used a novel technique for the abstraction
of the log files. Each unique event type was assigned a
unique ID and each line in the log file was abstracted to
one of those IDs. Each event type in the set was a regular
expression. For example
starting: xact (.*) is (.*)

1

where the “(.*)” is the parameter and the fixed string,
“starting: xact” is the message type. This regular expression
is assigned a unique ID. A set of these regular expressions
are extracted from the source code. Then each line in the log
file is compared against each of the regular expressions to
find the best match. The ID corresponding to the best match
is assigned to this line. Since it is a regular expression they
are also able to extract the value of the variable parameter
fields in the log lines. These regular expressions are built
from the source code. They search the source code for all the
calls to the function that prints the message in the log files.
This search is done using any standard text editor. The calls
to this logging function contain the static message usually
withing quotes and have variables for the parameter fields.
By replacing the variables with the string “(.*)”, they are
able to build the regular expressions.

The drawbacks of this solution are that we first need
access to the source code. If the people carrying out the
analysis are different from the people who develop the
application that is logging this information then they may not
have access to the source code. Even when we access to the
source code there are other issues. In their application Xu et
al. had the number of messages under a hundred [9]. But in
our prior research [6], where we used a similar abstraction,
the number of unique messages were close to 2,000. When
there are so many of them spread across multiple files,
then it takes a considerable amount of time and manual
inspection to build this set of regular expressions. The other
issue is that if the message to be printed in the log file is
constructed outside the call to the logging function, then we
will need to examine the abstract syntax trees to get the
regular expressions. Also in some cases the message in the
log file is not from the source code of the application. One
example is when the source code executes a command on

1(.*) - Where . = any character, and * = repeated any number of times.
Hence (.*) means any character repeated any number of times.

the machine on which the application is executing and prints
the output of this command to log file. This log line cannot
be abstracted to any of the regular expressions. But if any
of the above issues are not present in the log file that we
are abstracting, then this solution is the most accurate one.

Vaarandi [8] proposes a clustering algorithm for finding
patterns in log files. His tool is called the Simple Log
file Clustering Tool (SLCT). This algorithm is very similar
to apriori algorithms for mining frequent item sets. The
modifications made to a typical clustering algorithm for
finding frequent item sets, are based on the observations
he made about log file data. Firstly only a few words in the
log file occur very frequently. Secondly there was a high
correlation among these high frequency words. This was
because of the fact that each line on the log file is formatted
according to the message type and parameter information
for that event. This is the same reasoning as in the Xu et al.
[9] approach. The message is part of a function call. In his
approach Vaarandi does three passes over the log file. The
first is to build a data summary, i.e. the frequency count
of each word in the log file according to its position in
each line. In the second step he builds cluster candidates
by choosing log line with words that occur more than the
threshold, specified by the user. What is to be noted is that
the frequency of a word may be higher in certain positions
but may not be so in another position in the log line. In
the third step we choose the clusters from these candidates
that occur at a frequency higher than the user specified
threshold. Each of these candidates are a regular expression.
The words in each candidate that have a frequency lower
than the threshold are considered as the variable part and
hence replaced by “(.*)”.

In their research on identifying failure causes, Mariani
and Pastore [5], utilize the SLCT to abstract the log lines
to log events. But the SLCT was not designed to detect
the regular expressions to abstract all lines in a log file.
It was designed to detect frequently occurring patterns. A
pattern is considered frequently occurring if its frequency
is greater than a user specified threshold. All log lines that
don’t satisfy this condition are stored in the outliers file.
Hence even some log lines that repeat a few times but are
still less than the threshold won’t be considered as a pattern.
The goal of that research was to find frequently occurring
patterns and not log abstraction. In his paper [8] Vaarandi
used thresholds of 50%, 25%, 10 %, 5% and 1%. None of
these would either abstract all log lines to an event type or
produce regular expressions for abstraction. But if mining
frequently occuring patterns is the goal, then this solution
performs better than the other ones as it is application and
log file independant.

In their research Jiang et al. [4], propose a very efficient
approach to log file abstraction. They have 4 steps in their
approach: anonymize, tokenize, categorize and reconcile. In
anonymize they pick words that they think are parameters.

115

In their case study they classified the value that followed an
‘=’ or the value following the words ‘is—are—was—were’.
They replaced these values with a variable ‘$v’. Then in
tokenize they bag log lines with similar characteristics into
bins. All log lines in each bin have the same number of
static words and same number of parameter fields. Then in
the categorize step they go through each bin and compare the
anonymized log lines and group all the lines that are exactly
the same. Since the variable parts of the line are replaced
with a common variable, a simple string comparison would
group the log lines. Finally in the reconcile step they go
through the groups and combine groups that are different
by just one word. This way they are able to group log lines
that have a parameter that was not anonymized.

This is a very efficient technique that makes use of the
properties of messages in log files for abstraction. But the
assumptions are that the logs have enough structure to be
able to find the parameters using heuristics. But not all log
files have that kind of a rigid structure. The key hurdle
when trying to abstract log files is that we don’t know
what the parameters are in each line of the log file. If
we did know, then this technique like the Xu et al. [9],
would provide highly accurate results. If log files have
some structure to it then highly accurate abstraction can be
done. Both Xu et al’s [9] and Jiang et al’s [4] approach
would provide very accurate results when the assumptions
under which they operate hold true. When the log files are
of a free form and we don’t know where the parameters
occur and we don’t have access to the source code, then
only an approximate abstraction solution can be achieved.
A clustering algorithm like the SLCT [8] would be such a
solution. But as mentioned before, SLCT was not designed
to abstract log lines.

In the following section we present our approach, which
is a modification of the SLCT algorithm. It makes use of
the properties of log files for abstraction.

III. OUR APPROACH

Vaarandi [8] and Jiang et al. [4] come to the same
conclusions about the properties of messages in each line of
a log file. We agree with their conclusions and exploit these
properties to abstract free form log files. The key property
we exploit is that if a particular event occurs in multiple
places in a log file with different values for its parameter
field, then the static parts of the log line, i.e the words in
the message type field will occur many times whereas the
variable values will occur fewer times as compared to the
static words. We will use the following example to illustrate
this.
Start processing for Jen user
Start processing for Tom user
Start processing for Henry user
Start processing for Tom user
Start processing for Peter user

Table I
FREQUENCY TABLE OF THE WORDS AFTER DATA SUMMARY STEP

Word 1 2 3 4 5
Start 5 0 0 0 0

processing 0 5 0 0 0
for 0 0 5 0 0
Jen 0 0 0 1 0
Tom 0 0 0 2 0

... 0 0 0 0 ...
user 0 0 0 0 5

The words ‘Start’, ‘processing’, ‘for’, ‘user’ occur 5 times
each in the positions 1, 2, 3, and 5 respectively. This is
because this is the constant part of the log line. The words
‘Jen’, ‘Henry’, and ‘Peter’ occur once and ‘Tom’ occurs
twice. This is much less than the frequency of other words.
From this we can make the inference that the message that
created these lines in the log file would be of the following
format: ‘Start processing for $username user’. This is indeed
the statement that created this log message. The words that
belong to the constant message type field occur more often
than the words in the variable parameter field. We exploit
this property to abstract log lines to event types. For this we
carry out two passes over the log file.

In the first pass we build a data summary of the words in
the log file. We build a frequency table that has the number
of times a particular word occurs in a particular position in
the log line. Hence the rows in the table are the words, and
the columns are the positions in each log line. In Table I we
show a part of what the frequency table would look like in
the above example after we parse through the 5 lines. Filling
the values in this table can be done in time O(N), where N
is the number of words in the log file. We take one line at
a time and split it into individual words. Then we look up
if we have a row for that word in the table. If not we create
one. Then we go to this row and increment the value in the
column that corresponds to the position of the word in this
log line. Looking up the word can be done in constant time
by using a hashing function. At the end of the first pass we
would have completed building this table.

In the second pass we examine each log line again. Here
we do a look up of the table for each word in the line. Then
we pick the frequency of that word in that position in the log
line from the corresponding column. So for example, when
we are parsing through the log line ‘Start processing for Jen
user’, we split it into individual words. Then we look them
up in the frequency table. So here we look up, say, ‘Start’.
Then since ‘Start’ is the first word in the log line, we retrieve
the frequency of the word ‘Start’ in the first column. Here
we would be extracting the value 5. We do this for all the
words in the log line.

Then we look for words that occur a similar number of
times. Once we find the cluster with the most number of
words, we find the lowest of their frequencies. Then any
word in the line that has a frequency that is greater than or

116

equal to this value would be a constant word in the log line.
In our example, the words ‘Start’, ‘processing’, ‘for’, ‘user’
occur 5 times each. The lowest frequency is 5. Hence all
words that are greater than or equal to 5 would be a constant
word in the log line. We then save the constant message
type and associate it with a unique ID in a list of (message
type, ID) pairs. If this is the first occurrence of a message
type a new pair is created. Any word that is less than the
particular value would be the variable parameters. Hence
‘Jen’ that has a frequency of 1 is a variable parameter. The
execution time of this is proportional to the number of words
in a line. Hence this step too can be done in O(N) time. So
the abstracted version of the log line ‘Start processing for
Jen user’ would be ‘1: Jen’, and the list would have the
association ‘Start processing for * user: 1’. Hence we have
successfully extracted the variable parameter field from the
constant message type field. In the case of usernames with
two or three words, it might affect the frequency of the word
‘user’ in the example. But in log files we have noticed that
there are enough of those (two or three word usernames)
log lines too. Hence they too are abstracted the same way
to the same message type as well.

In SLCT the author tries to find clusters across log lines
[8]. What differentiates our approach from SLCT is that we
look for clusters within a log line. The clustering is not of
the words but of their frequencies. This is how we are able
to identify all the event types in the log file.

IV. RESULTS

We implemented our approach and tested it on a log file
from the Virtual Computing Lab [2], a cloud computing
management application at North Carolina State University.
The log file was 15 MB big and had 128,636 log lines.
Every one of the 128,636 log lines was extracted to one
of 727 unique event types. We are able to detect events
that occur many hundreds to times to ones that occur just
twice. We however cannot detect the message and parameter
fields in a log line that has occurred just once. But since
it has occurred only once it is unique in itself and hence
abstraction is not necessary. Also if the variable value is the
same in most of the occurrences of that event, then it will
not be detected as one. But the frequency of the variables
must be very high for this to happen. SLCT detected only
53 clusters when the threshold was set to 1%. 34,896 log
lines were not abstracted at all. This is the disadvantage of
SLCT. But then it was designed to detect only the top few
clusters, which it found. In the log file that we used in our
case study we could not use any of the heuristics given by
Jiang et al. [4] or derive new heuristics to consistently find
the parameters. Hence we could not perform the anonymize
step of their approach on our log file. Therefore we could not
compare our technique against theirs. But given a log file
where we can effectively anonymize the parameters, their
approach would perform better.

V. CONCLUSION

Log files contain a lot of information in them and it is
often necessary to use an automated analyses technique to
mine this information. But the log files have an inherent
variability due to the entangling of constant message types
and variable parameter types. Hence it is essential for us
to abstract the messages in the log file to event types. In
the literature there are numerous techniques for log file
abstraction. But each of them have their own assumptions
like, access to source code or ability to identify parameters
using heuristics. These assumptions hold true in a lot of
cases and when they do these techniques provide the best
and most accurate results. But in the many cases where these
assumptions don’t hold true, a more approximate algorithm
is required. In this paper we present an approach to log
file abstraction that is similar to the SLCT tool. We cluster
similar frequency words in each line and abstract it to event
types. This is however an approximate approach. As part of
future work we intend to calculate the precision and recall of
all the four techniques mentioned in this paper on log files
from different applications to quantitatively find the better
technique under the given conditions.

ACKNOWLEDGMENT

The authors would like to thank Aaron Peeler and Andy
Kurth from the VCL team for providing the log files. This
research was funded in part by the DOE grants DE-FC02-
ER25809, and DE-AC02-05CH11231.

REFERENCES

[1] Splunk http://www.splunk.com/ (accessed 01/12/2010)

[2] Virtual Computing Lab http://vcl.ncsu.edu/ (accessed
01/12/2010)

[3] S.E. Hansen, and E.T. Atkins., Automated System Monitoring
and Notification With Swatch. 7th USENIX Conference on
System Administration. System Administration Conference.
Berkeley, CA. November, 1993. pp. 145-152.

[4] Z.M. Jiang, A.E. Hassan, G. Hamann, P. Flora. Abstracting Ex-
ecution Logs to Execution Events for Enterprise Applications.
Journal of Software Maintenance and Evolution:Research and
Practice. Volume 20 Issue 4. pp. 249 - 267.

[5] L. Mariani, F. Pastore,. 2008. Automated Identification of
Failure Causes in System Logs. 19th International Symposium
on Software Reliability Engineering, 10-14 Nov. 2008. pp. 117-
126

[6] M. Nagappan, K. Wu, M.A. Vouk,. 2009. Efficiently Extracting
Operational Profiles from Execution Logs using Suffix Arrays.
20th International Symposium on Software Reliability Engi-
neering, 16-19 Nov, 2009, Mysuru, India. pp. 41 - 50.

[7] F. Salfner and S.Tschirpke. 2008. Error Log Processing for Ac-
curate Failure Prediction. In Proceedings of the First USENIX
Workshop on the Analysis of System Logs, December 7, 2008,
San Diego, CA, USA

[8] R. Vaarandi. 2003. A Data Clustering Algorithm for Mining
Patterns from Event Logs. IEEE Workshop on IP Operations
and Management, 1-3 Oct. 2003. pp. 119-126.

[9] W. Xu, L. Huang, A. Fox, D. Patterson, and M. Jordan.
2008. Mining Console Logs for Large-Scale System Problem
Detection. SysML‘08, Dec 2008. pp. 1-6.

117

