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ABSTRACT 

One of the goals of software engineering research is to achieve gen-

erality:  Are the phenomena found in a few projects reflective of 

others?  Will a technique perform as well on projects other than the 

projects it is evaluated on?  While it is common sense to select a 

sample that is representative of a population, the importance of di-

versity is often overlooked, yet as important.  In this paper, we com-

bine ideas from representativeness and diversity and introduce a 

measure called sample coverage, defined as the percentage of pro-

jects in a population that are similar to the given sample.  We intro-

duce algorithms to compute the sample coverage for a given set of 

projects and to select the projects that increase the coverage the 

most.  We demonstrate our technique on research presented over 

the span of two years at ICSE and FSE with respect to a population 

of 20,000 active open source projects monitored by Ohloh.net.  

Knowing the coverage of a sample enhances our ability to reason 

about the findings of a study.  Furthermore, we propose reporting 

guidelines for research: in addition to coverage scores, papers 

should discuss the target population of the research (universe) and 

dimensions that potentially can influence the outcomes of a re-

search (space). 

Categories and Subject Descriptors 

D.2.6 [Software Engineering]: Metrics 

General Terms 

Measurement, Performance, Experimentation 

Keywords 

Diversity, Representativeness, Sampling, Coverage 

1. INTRODUCTION 
Over the past twenty years, the discipline of software engineering 

research has grown in maturity and rigor.  Researchers have worked 

towards maximizing the impact that software engineering research 

has on practice, for example, by providing techniques and results 

that are as general (and thus as useful) as possible.  However, 

achieving generality is not easy: Basili et al. [1] remarked that 

“general conclusions from empirical studies in software engineer-

ing are difficult because any process depends on a potentially large 

number of relevant context variables”. 

With the availability of OSS projects, the software engineering re-

search community has moved to more extensive validation.  As an 

extreme example, the study of Smalltalk feature usage by Robbes 

et al. [2] examined 1,000 projects.  Another example is the study 

by Gabel and Su that examined 6,000 projects [3]. But if care isn’t 

taken when selecting which projects to analyze, then increasing the 

sample size does not actually contribute to the goal of increased 

generality.  More is not necessarily better.   

As an example, consider a researcher who wants to investigate a 

hypothesis about say distributed development on a large number of 

projects in an effort to demonstrate generality.  The researcher goes 

to the json.org website and randomly selects twenty projects, all of 

them JSON parsers.  Because of the narrow range of functionality 

of the projects in the sample, any findings will not be very repre-

sentative; we would learn about JSON parsers, but little about other 

types of software.  While this is an extreme and contrived example, 

it shows the importance of systematically selecting projects for em-

pirical research rather than selecting projects that are convenient.  

With this paper we provide techniques to (1) assess the quality of a 

sample, and to (2) identify projects that could be added to further 

improve the quality of the sample. 

Other fields such as medicine and sociology have published and 

accepted methodological guidelines for subject selection [2] [4]. 

While it is common sense to select a sample that is representative 

of a population, the importance of diversity is often overlooked yet 

as important [5]. As stated by the Research Governance Framework 

for Health and Social Care by the Department of Health in the UK: 

“It is particularly important that the body of research evi-

dence available to policy makers reflects the diversity of the 

population.” [6] 

Similarly the National Institutes of Health in the United States de-

veloped guidelines to improve diversity by requiring that certain 

subpopulations are included in trials [4]. The aim of such guidelines 

is to ensure that studies are relevant for the entire population and 

not just the majority group in a population. 

Intuitively, the concepts of diversity and representativeness can be 

defined as follows: 

 Diversity. A diverse sample contains members of every 

subgroup in the population and within the sample the 

subgroups have roughly equal size. Let’s assume a pop-

ulation of 400 subjects of type X and 100 subjects of type 

Y. In this case, a perfectly diverse sample would be 1×X 

and 1×Y. 

 Representativeness. In a representative sample the size 

of each subgroup in the sample is proportional to the size 

of that subgroup in the population. In the example above, 

a perfectly representative sample would be 4×X and 1×Y. 

Note that based on our definitions diversity (“roughly equal size”) 

and representativeness (“proportional”) are orthogonal concepts. A 

highly diverse sample does not guarantee high representativeness 

and vice versa. 
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In this paper, we combine ideas from diversity and representative-

ness and introduce a measure called sample coverage, or simply 

coverage — defined as the percentage of projects in a population 

that are similar to a given sample.  Rather than relying on explicit 

subgroups that are often difficult to identify in the software domain, 

we use implicit subgroups (neighborhoods) based on similarities 

between projects; we will discuss details in Section 2. 

Sample coverage allows us to assess the quality of a given sample; 

the higher the coverage, the better (Section 2.3). Further, it allows 

prioritizing projects that could be added to further improve the 

quality of a given sample (Section 2.4). Here the idea is to select 

projects based on the size of their neighborhood not yet covered by 

the sample.  In other words, select projects first that add the most 

coverage to a sample.  This is a hybrid selection strategy: neighbor-

hoods are typically picked only once (reflecting ideas from diver-

sity) but the neighborhoods with the highest coverage are picked 

first (reflecting ideas from representativeness). 

We make the following contributions with this paper: 

1. We introduce a vocabulary (universe, space, and config-

uration) and technique for measuring how well a sample 

covers a population of projects. 

2. We present a technique for selecting projects in order to 

maximize the coverage of a study. 

3. We provide a publicly available R implementation of the 

algorithms and the data used in this paper. Both have 

been successfully evaluated by the ESEC/FSE artifact 

evaluation committee and found to meet expectations. 

4. We assess the sample coverage of papers over two years 

at ICSE and FSE with respect to a population of 20,000 

active open source projects and provide guidance for re-

porting project selection. 

Understanding the coverage of a sample, can help to understand the 

context under which the results are applicable.  We hope that the 

techniques and recommendations in this paper will be used by re-

searchers to achieve consistent methods of selecting and reporting 

projects for their research. 

In the rest of this paper, we first present a general technique for 

evaluating the coverage of a sample with respect to a population of 

software projects and selecting a sample with maximum coverage 

(Section 2).  We then demonstrate this technique by calculating the 

coverage of research over two years at ICSE and FSE (Section 3). 

Then, we provide appropriate methods of reporting coverage and 

project selection in general and discuss implications (Section 4). 

Finally we present related work (Section 5), and our conclusions 

(Section 6).  

2. SAMPLE COVERAGE 
In this section, we present a technique for assessing the coverage of 

a sample: we first introduce our terminology (Section 2.1 and 2.2) 

followed by algorithms to score the coverage of a sample of pro-

jects (Section 2.3) and select the projects that increase the coverage 

the most (Section 2.4). 

We implemented both algorithms (from Section 2.3 and 2.4) in the 

R programming language [8]; they are available as an R package.  

The appendix has a walkthrough on how to use our implementation. 

2.1 Universe, Space, and Configuration 
The universe is a large set of projects; it is often also called popu-

lation.  The universe can vary for different research areas.  For ex-

ample, research on mobile phone applications will have a different 

universe than web applications. 

Possible universes: all open-source projects, all closed-source 

projects, all web applications, all mobile phone applications, all 
open-source projects on Ohloh, and many others. 

Within the universe, each project is characterized with one or more 

dimensions. 

Possible dimensions: total lines of code, number of developers, 

main programming language, project domain, recent activity, 
project age, and many others. 

The set of dimensions that are relevant for the generality of a re-

search topic define the space of the research topic. Similar to uni-

verses, the space can vary between different research topics.  For 

example, we expect program analysis research to have a different 

space than empirical research on productivity: 

Possible space for program analysis research: total lines of code, 

main programming language. 
 

Possible space for empirical research on productivity: total lines 

of code, number of developers, main programming language, 
project domain, recent activity, project age, and likely others. 

The goal for a research study should be to provide a high coverage 

of the space in a universe.  The underlying assumption of this paper 

is that projects with similar values in the dimensions—that is they 

are close to each other in the space—are representative of each 

other.  This assumption is commonly made in the software engi-

neering field, especially in effort estimation research [9,10].  For 

each dimension d, we define a similarity function that decides 

whether two projects p1 and p2 are similar with respect to that di-

mension: 

𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑑(𝑝1, 𝑝2) → {true; false} 

The list of the similarity functions for a given space is called the 

configuration.   

configuration 𝐶 = (𝑠𝑖𝑚𝑖𝑙𝑎𝑟1, … , 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑛) 

Similar to universe and space, similarity functions (and the config-

uration) can vary across research studies.  For some research topics, 

projects written in C might be considered similar to projects written 

in C++, while for other research they might be considered different. 

To identify similar projects within the universe, we require the pro-

jects to be similar to each other in all dimensions. 

𝑠𝑖𝑚𝑖𝑙𝑎𝑟(𝑝1, 𝑝2) =  ⋀ 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑑(𝑝1, 𝑝2)
𝑑

 

If no similarity function is defined for a dimension, we assume the 

following default functions, with p[d] the value of project p in di-

mension d and |e| the absolute (positive) value of the specified ex-

pression e: 

 For numeric dimensions (e.g., number of developers): We 

consider two projects to be similar in a dimension if their 

values are in the same order of magnitude (as computed 
by log10 and expressed by the 0.5 threshold below). 

𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑑(𝑝1, 𝑝2) → |log10 𝑝1[𝑑] − log10 𝑝2[𝑑]| ≤ 0.5 



 

 

 For categorical dimensions (e.g., main programming lan-

guage):  We consider two projects to be similar in a di-
mension if the values are identical. 

𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑑(𝑝1, 𝑝2) → 𝑝1[𝑑] = 𝑝2[𝑑] 

As mentioned above the similarity functions can be overridden in a 

configuration.  Different configurations may exist for different re-

search topics and areas.  The distinction into numerical and cate-

gorical dimensions is a simplification as not all measurements of 

software are on a numerical and absolute scale.  Measurements that 

are on ordinal scale could easily be accounted for with custom sim-

ilarity functions. 

2.2 Example: Coverage and Project Selection 
Figure 1(a) shows a sample universe and a sample space: the uni-

verse contains 50 projects, each represented by a point.  The space 

is defined by two dimensions: the number of developers (horizon-

tal) and the number of lines of code (vertical).  In practice, the uni-

verse can be thousands of projects and the space can be defined by 

numerous dimensions, not just two.  We will present a more com-

plex instantiation of our framework in Section 3. 

Consider project A in Figure 1(a) which is represented by an en-

larged point.  The light gray areas indicate the projects that are sim-

ilar to project A in one dimension (based on the similarity functions 

that are defined in the configuration).  The intersection of the light 

gray areas (the dark gray area) indicates the projects that are similar 

to A with respect to the entire space.  In total seven other projects 

are similar to A. Thus project A covers (7+1)/50=16% of the uni-

verse.  We can also compute coverage for individual dimensions: 

project A covers 13/50=26% for number of developers and 

11/50=22% for lines of code. 

Figure 1(b) illustrates how a second project increases the coverage: 

 If we add project B, ten additional projects are covered, the 

universe coverage increase to 18/50=36%. The coverage 

of the developer and lines of code dimensions increases to 
60% and 56% respectively.  

 However, if we add project C instead of project B, there is 

only little impact on coverage.  All similar projects have 

been already covered because project C is close to project 

A.  Thus the universe coverage increases only to 18%. 
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Fig. 1.  Sample universe of 50 projects defined by a two-di-

mensional space. (a) The light gray areas indicate projects 

similar to project A in one dimension.  The dark gray areas 

indicate projects similar to project A in both dimensions.   

(b) Project B increases the coverage of the space more than 

project C does, because C is too similar to projects already 

covered by project A. 

This illustrates an important point: to provide a good coverage of 

the universe, one should select projects that are diverse rather than 

similar to each other.  We now introduce algorithms to score the 

coverage (score_projects) and to select additional projects such that 

the coverage is maximized (next_projects). 

2.3 Computing Coverage 
We compute the sample coverage of a set of projects P for a given 

universe U, an n-dimensional space D, and a configuration 

(𝑠𝑖𝑚𝑖𝑙𝑎𝑟1, … , 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑛) as follows.  (Recall that the definition of 

similar is 𝑠𝑖𝑚𝑖𝑙𝑎𝑟 = 𝑠𝑖𝑚𝑖𝑙𝑎𝑟1 ∧ … ∧ 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑛) 

𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒 =
|⋃ {𝑞|𝑠𝑖𝑚𝑖𝑙𝑎𝑟(𝑝, 𝑞)}𝑝∈𝑃 |

|𝑈|
 

As discussed before, research topics can have different parameters 

for universe, space, and configuration.  Therefore it is important to 

not just report the coverage but also the context in which it was 

computed: What projects, is the research intending to be relevant 

ALGORITHM I.  Scoring Projects 

𝐬𝐜𝐨𝐫𝐞_𝐩𝐫𝐨𝐣𝐞𝐜𝐭𝐬(projects 𝑃, universe 𝑈, space 𝐷, config 𝐶): 
1: 𝑐_𝑠𝑝𝑎𝑐𝑒 ← ∅ 
2: 𝑐_𝑑𝑖𝑚 ← [∅, … , ∅]  
3: for each project 𝑝 ∈ 𝑃:  
4:   𝑐_𝑝𝑟𝑜𝑗𝑒𝑐𝑡 ← 𝑈 
5:  for each dimension 𝑑 ∈ 𝐷:  
6:   𝑎𝑟𝑒_𝑠𝑖𝑚𝑖𝑙𝑎𝑟(𝑝, 𝑞) ← 𝐶[𝑑](𝑝, 𝑞) 
7:   𝑠𝑖𝑚_𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑠 ← {𝑞|𝑎𝑟𝑒_𝑠𝑖𝑚𝑖𝑙𝑎𝑟(𝑝, 𝑞)} 
8:   𝑐_𝑝𝑟𝑜𝑗𝑒𝑐𝑡 ←  𝑐_𝑝𝑟𝑜𝑗𝑒𝑐𝑡 ∩ 𝑠𝑖𝑚_𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑠  
9:   𝑐_𝑑𝑖𝑚[𝑑] ←  𝑐_𝑑𝑖𝑚[𝑑] ∪ 𝑠𝑖𝑚_𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑠  
10:  𝑐_𝑠𝑝𝑎𝑐𝑒 ←  𝑐_𝑠𝑝𝑎𝑐𝑒 ∪ 𝑐_𝑝𝑟𝑜𝑗𝑒𝑐𝑡  
11: 𝑠𝑐𝑜𝑟𝑒 ← |𝑐_𝑠𝑝𝑎𝑐𝑒|/|𝑈|  
12: 𝑑𝑖𝑚_𝑠𝑐𝑜𝑟𝑒 ← apply(𝑐_𝑑𝑖𝑚, 𝑋 → |𝑋|/|𝑈|)  
13: return (𝑠𝑐𝑜𝑟𝑒, 𝑑𝑖𝑚_𝑠𝑐𝑜𝑟𝑒) 
 

ALGORITHM II.  Selecting the Next Projects 

𝐧𝐞𝐱𝐭_𝐩𝐫𝐨𝐣𝐞𝐜𝐭𝐬(𝐾, projects 𝑃, universe 𝑈, space 𝐷, config 𝐶): 

1: 𝑟𝑒𝑠𝑢𝑙𝑡 ← [ ] 
2: 𝑠𝑖𝑚𝑖𝑙𝑎𝑟(𝑝, 𝑞) = 𝐶[1](𝑝, 𝑞) ∧ … ∧ 𝐶[𝑑](𝑝, 𝑞) 
3: 𝑐_𝑠𝑝𝑎𝑐𝑒 ← ⋃ {𝑞|𝑠𝑖𝑚𝑖𝑙𝑎𝑟(𝑝, 𝑞)}𝑝∈𝑃  

4: 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 ← 𝑈 − 𝑃  
5: for 𝑖 ∈ {1, … , 𝐾}: 
6:  𝑐_𝑏𝑒𝑠𝑡 ← ∅  
7:  𝑝_𝑏𝑒𝑠𝑡 ← NA  
8:  for each candidate 𝑝 ∈ 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠: 
9:   𝑐_𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 ← {𝑞|𝑠𝑖𝑚𝑖𝑙𝑎𝑟(𝑝, 𝑞)} 
10:   𝑐_𝑛𝑒𝑤 ← (𝑐_𝑠𝑝𝑎𝑐𝑒 ∪ 𝑐_𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒) − 𝑐_𝑠𝑝𝑎𝑐𝑒 
11:   if |𝑐_𝑛𝑒𝑤| > |𝑐_𝑏𝑒𝑠𝑡|: 
12:    𝑐_𝑏𝑒𝑠𝑡 ← 𝑐_𝑛𝑒𝑤 
13:    𝑝_𝑏𝑒𝑠𝑡 ← 𝑝 
14:  if 𝑝_𝑏𝑒𝑠𝑡 = NA: 
15:   break 
16:  𝑟𝑒𝑠𝑢𝑙𝑡 ← append(𝑟𝑒𝑠𝑢𝑙𝑡, 𝑝_𝑏𝑒𝑠𝑡) 
17:  𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 ← 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 − {𝑝_𝑏𝑒𝑠𝑡}  
18:  𝑐_𝑠𝑝𝑎𝑐𝑒 ← 𝑐_𝑠𝑝𝑎𝑐𝑒 ∪ 𝑐_𝑏𝑒𝑠𝑡 
19: return (𝑟𝑒𝑠𝑢𝑙𝑡) 
 



 

 

for (universe)?  What criteria matter for findings to hold for other 

projects (space, configuration)? 

To compute the coverage for a set of projects, we implemented the 

algorithm shown in Algorithm I in R.  For each project 𝑝 ∈ 𝑃, the 

algorithm computes the set of projects c_project that are covered 

by p (Lines 3-10).  As a naming convention we use the prefix c_ in 

variable names for sets of covered projects.  In addition, the algo-

rithm computes the projects c_dim[d] covered by each dimension 

d (Line 9).  After iterating through the set P, the algorithm com-

putes the coverage score within the entire space (Line 11) and for 

each dimension (Line 12).  The apply function maps the function 

𝑋 → |𝑋|/|𝑈| to the vector c_dim and returns a vector with the re-

sult. 

2.4 Project Selection 
In order to guide project selection in such a way that the coverage 

of a sample is maximized, we implemented the greedy algorithm 

that is shown in Algorithm II.  The input to the algorithm is the 

number K of projects to be selected, a set of already selected pro-

jects P, a universe U, an n-dimensional space D, and a configura-

tion 𝐶 = (𝑠𝑖𝑚𝑖𝑙𝑎𝑟1, … , 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑛).   

The algorithm returns a list of up to K projects; the list is ordered 

decreasingly based on how much the projects increase the coverage 

of the space.  The set of preselected projects P can be empty.  By 

calling the algorithm with 𝑃 = ∅ and 𝐾 = |𝑈| one can order the 

entire universe of projects based on their coverage increase and re-

turns the subset of projects that is needed to cover the entire uni-

verse (for a score of 100%). 

The main part of the algorithm is the loop in Lines 5-18 that is re-

peated at most K times.  The loop is exited early (Lines 14-15) when 

no project is found that increases the coverage; in this case the en-

tire universe has been covered (score of 100%).  The algorithm 

maintains a candidate set of projects (candidates), which is initial-

ized to the projects in universe U but not in P (Line 4, we 

use − to denote set difference).  The body of the main loop com-

putes for each candidate 𝑝 ∈ 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 (Lines 8-13) how much 

its coverage (Line 9) would increase the current coverage c_space 

(Line 10) and memorizes the maximum increase (Lines 11-13).  At 

the end of an iteration i, the project p_best with the highest coverage 

increase is appended to the result list and then removed from the 

candidates list (Lines 16-17); the current coverage c_space is up-

dated to include the projects in c_best (Line 18). 

Our R implementation includes several optimizations that are not 

included in Algorithm I for the sake of comprehension.  To reduce 

the cost of set operations we use index vectors in R (similar to bit 

vectors).  Computing the projects similar to a candidate in Line 9 is 

an expensive operation and we therefore cache the results across 

loop iterations.  Lastly, starting from the second iteration, we do 

process candidates in Line 10 in decreasing order of their |𝑐_𝑛𝑒𝑤| 
values from the previous iteration.  The |𝑐_𝑛𝑒𝑤| values from itera-

tion 𝑖 − 1 are an upper bound of how much a candidate can con-

tribute to the coverage in iteration 𝑖.  If the current best increase 
|𝑐_𝑏𝑒𝑠𝑡| in iteration 𝑖 is greater or equal than the previous increase 
|𝑐_𝑛𝑒𝑤| of the current candidate in iteration 𝑖 − 1, we can exit the 

inner loop (Lines 8-13) and skip the remaining candidates.  This 

optimization significantly reduces the search space for projects. 

2.5 Implementation in R 
The R implementation of the algorithms for computing coverage 

and selecting next projects is publicly available: 

http://sailhome.cs.queensu.ca/replication/representativeness/ 

3. THE OHLOH CASE STUDY 
In this section we provide an example of how to apply our tech-

nique and illustrate how it can be used to quantify the coverage of 

software engineering research. 

3.1 The Ohloh Universe 
We chose as universe the active projects that are monitored by the 

Ohloh platform [11].  Ohloh is a social coding platform that collects 

data such as main programming language, number of developers, 

licenses, as well as software metrics (lines of code, activity statis-

tics, etc.).  Note that the Ohloh data is just one possible universe 

and there are many other universes that could be used for similar 

purposes. 

To collect data to describe the projects in the universe, we used the 

following steps: 

1. We extracted the identifiers of active projects using the 

Project API of Ohloh.  We decided to include only active 

projects in the universe because we wanted to measure 

coverage for ongoing development.  We followed Richard 

Sands’ definition [12] of an active project, that is, a project 

that had at least one commit and at least 2 committers in 
the last 12 months. 

2. For each project identifier, we extracted three different 

categories of data (each with one call to the API).  The 

first is the Analysis category which has data about main 

programming language, source code size and contributors.  

The second is the Activity category which summarizes 

how much source code developers have changed each 

month (commits, churn).  We accumulated the activity 

data for the period of June 2011 to May 2012.  Finally, we 

collected what is called the Factoid category.  This cate-

gory contains basic observations about projects such as 

team size, project age, comment ratio, and license con-
flicts.  

3. We aggregated the XML files returned by the Ohloh APIs 

and converted them into tab-separated text files using a 

custom script.  We removed projects from the universe 

that had missing data (156 projects had no main language 

or an incomplete code analysis) or invalid data (40 pro-

jects had a negative number for total lines of code). 

After selecting only active projects and removing projects with 

missing and invalid data, the universe consists of a total of 20,028 

projects.  This number is comparable to the number of active pro-

jects reported by Richard Sands [12]. 

3.2 The Ohloh Space 
We use the following dimensions for the space.  The list of dimen-

sions is inspired by the comparison feature in Ohloh.  The data for 

the dimensions is provided by Ohloh. 

 Main language. The most common programming lan-

guage in the project.  Ohloh ignores XML and HTML 

when making this determination. 

 Total lines of code. Blank lines and comment lines are ex-

cluded by Ohloh when counting lines of code. 

 Number of contributors (12 months). Contributors with at 
least one commit in the last 12 months.  

 Number of churn (12 months). Number of added and de-

leted lines of code, excluding comment lines and blank 
lines, in the last 12 months. 

 Number of commits (12 months). Commits made in the last 
12 months. 



 

 

 Project age. The Ohloh factoid for project age: projects 

less than 1 year old are Young, between 1 year and 3 years 

they are Normal, between 3 and 5 years they are Old, and 
above 5 years they are Very Old. 

 Project activity. The Ohloh factoid for project activity: if 

during the last 12 calendar months, there were at least 25% 

fewer commits than in the prior 12 months, the activity is 

Decreasing; if there were 25% more commits, the activity 

is Increasing; otherwise the activity is Stable. 

In our case, metrics for the last 12 months are for the period of June 

2011 to May 2012.  Again this is just one possible space and there 

will be other dimensions that can be relevant for the generality of 

research. 

Figure 2 shows the distributions of the dimensions in our dataset.  

There are over 70 programming languages captured in the Ohloh 

dataset; the most frequently used languages are Java, Python, C, 

and JavaScript.  A large number of projects are very small in terms 

of size, people, and activity: 4,937 projects are less than 2,000 lines 

of code; yet 713 projects exceed a million lines of code.  Many pro-

jects have only 2 contributors (7,235 projects) and not more than 

50 commits (10,528 projects) in the last 12 months.  Again there 

are extreme cases with hundreds of contributors and thousands of 

commits. 

3.3 Covering the Ohloh Universe 
As a first experiment, we computed the set of projects required to 

cover the entire population of 20,028 Ohloh projects.  For this we 

called the next_projects algorithm with N=20,028, an empty initial 

project list P, and the default configuration (see Section 2.1). 

𝐧𝐞𝐱𝐭_𝐩𝐫𝐨𝐣𝐞𝐜𝐭𝐬(𝑁 = 20028, projects 𝑃 = ∅, universe 𝑈
= ohloh, space 𝐷, config 𝐶) 

Figure 3 shows the results with a cumulative sum plot.  Each point 

(x,y) in the graph indicates that the first x projects returned by 

next_projects covered y percent of the Ohloh universe.  The first 50 

projects (or 2.5%) covered 15.3% of the universe, 392 projects cov-

ered 50%, and 5030 projects covered the entire universe. 

In Table 1 we show the first 15 projects returned by the algorithm 

next_projects.  These are the projects that increase the coverage of 

the space the most.  We draw the following conclusions.  First, 

small software projects written in dynamic languages dominate the 

list (seven of the first nine are in Ruby or Python and under 2000 

LOC).  Are researchers exploring the problems faced by these pro-

jects?  Even when considering all 15 projects, these projects to-

gether comprise less than 200,000 LOC and just over 1,000 com-

mits, an order of magnitude lower than for Apache HTTP, Mozilla 

Firefox, or Eclipse JDT.  The time and space required to analyze or 

evaluate on these projects are fairly low, providing a ripe oppor-

tunity for researchers to achieve impact without large resource de-

mands.  This result also counters a common criticism of some soft-

ware engineering research: some people expect that research al-

ways has to scale to large software and pay less attention to smaller 

projects.  However, as Table I and Figure 2 show, the space covered 

by smaller projects is non-negligible. 

3.4  Covering the Ohloh Universe with the 

ICSE and FSE Conferences 
We now apply our technique instantiated with the Ohloh universe 

to papers from premiere conferences in the software engineering 

field: the International Conference on Software Engineering 

(ICSE) and Foundations of Software Engineering (FSE).  This sec-

tion does not mean to make general conclusions about the entire 

 

 

Fig. 2.  Histograms of the dimensions in the Ohloh universe. 

 

Fig. 3.  Number of projects that are needed to cover the Ohloh 

universe. Each point in the graph means that x projects can 

cover y percent of the universe. 



 

 

software engineering community. Rather results should only be 

viewed in the context of the papers in those two years of those two 

conferences (ICSE 2011, 2012 and FSE 2010, 2011). 

To create the dataset the first author read each (full) paper of the 

main technical research track in each conference, looked for the 

software projects that were analyzed and recorded the number 

and—if mentioned—the names of the projects in a spreadsheet.  We 

then queried Ohloh for each of the software projects to find the cor-

responding identifier, which we used to cross-reference the data 

with our corpus. 

Some projects we could not cross reference with our dataset be-

cause of any one of the following reasons: (a) the project was not 

indexed by Ohloh; (b) the paper used an aggregated set of projects, 

and particular projects were not named in the paper; (c) the project 

does not meet the criteria to be included in the universe, e.g., the 

project has not been under development in the past year, has only 

one developers, or has missing or invalid data. 

The analysis of the ICSE and FSE conferences revealed several 

large-scale studies that analyzed hundreds if not thousands of pro-

jects.  Some of these papers we had to exclude from our analysis as 

they either analyzed closed-source projects or did not report the 

names of the individual projects analyzed or analyzed inactive 

Ohloh projects. 

What are the most frequently used projects in the 

ICSE and FSE conferences? 
We found 635 unique projects that were analyzed by the ICSE and 

FSE conferences in the two-year period.  Out of these we could map 

207 to the universe of active Ohloh projects.   

The most frequently studied projects were the Eclipse Java Devel-

opment Tools (JDT) in 16 papers, Apache HTTP Server in 12 pa-

pers, gzip, jEdit, Apache Xalan C++, and Apache Lucene each in 8 

papers and Mozilla Firefox in 7 papers.  Another frequently studied 

project is Linux, which was analyzed in 12 papers.  While the Linux 

project is listed on Ohloh, the code analysis has not yet completed 

TABLE 1.  The first 15 projects returned by 𝐧𝐞𝐱𝐭_𝐩𝐫𝐨𝐣𝐞𝐜𝐭𝐬(𝑵 = 𝟐𝟎𝟎𝟐𝟖, projects 𝑷 = ∅, universe 𝑼 = ohloh, space 𝑫, config 𝑪)  

with the increase in coverage 

Name Language Lines Contributors Commits Churn Age Activity Increase 

serialize_with_options Ruby 301 2 10 147 Normal Increasing 0.574% 

Java Chronicle Java 3892 4 81 8629 Young Stable 0.569% 

Hike Ruby 616 3 11 333 Normal Stable 0.559% 

Talend Service Factory  Java 20295 8 162 27803 Normal Stable 0.549% 

OpenObject Library Python 1944 5 36 1825 Normal Stable 0.459% 

ruote-amqp-pyclient Python 315 4 7 139 Normal Stable 0.454% 

sign_server Python 1791 3 63 3415 Young Stable 0.414% 

redcloth-formatters-plain Ruby 655 4 5 82 Normal Decreasing 0.384% 

python-yql Python 1933 2 11 93 Normal Decreasing 0.369% 

mraspaud's mpop Python 12664 7 160 22124 Normal Stable 0.369% 

appengine-toolkit JavaScript 18253 5 110 20572 Normal Stable 0.364% 

socket.io-java Java 23533 4 187 46254 Young Stable 0.335% 

Glinux C 41052 8 55 3114 Very Old Decreasing 0.335% 

Pax URL Java 31467 7 73 6923 Old Decreasing 0.330% 

Honeycrm Java 14864 2 45 3810 Normal Decreasing 0.315% 

 

TABLE 2.  The representativeness of all ICSE and FSE papers in the past 2 years as well as the five most representative papers.  The 

universe is the active Ohloh projects, the space is (Main language, Total lines of code, Contributors, Churn, Commits, Project age, 

Project activity) and the configuration consists of the default similarity functions. 

 

All papers of 

ICSE and FSE 

(past 2 years)

Gabel and Su. 

Uniqueness of 

source code

Apel et al. 

Semistructured 

merge

Beck and Diehl.  

Modularity and 

code coupling

Uddin et al. 

Analysis of API 

usage concepts

Jin and Orso. 

Reproducing 

field failures

Score 9.15% 1.09% 0.85% 0.81% 0.73% 0.67%

Main language 91.42% 48.57% 43.62% 15.07% 15.07% 12.37%

Total lines of code 99.29% 65.82% 57.06% 55.98% 32.30% 61.93%

Contributors (12 months) 100.00% 99.94% 99.79% 99.13% 99.77% 96.94%

Churn (12 months) 98.08% 70.45% 70.68% 79.32% 62.51% 51.58%

Commits (12 months) 100.00% 97.98% 96.93% 97.68% 56.12% 67.78%

Project age 100.00% 88.80% 43.75% 20.39% 20.39% 20.39%

Project activity 100.00% 100.00% 100.00% 100.00% 100.00% 59.83%



 

 

and only limited information is available (no activity, no lines of 

code).  Therefore we ignored Linux from our analysis. 

How much of the Ohloh universe do the ICSE and 

FSE conferences cover? 
The 207 Ohloh projects analyzed in the two years of the ICSE and 

FSE conferences covered 9.15% of the Ohloh population.  At a first 

glance this score seems low, but one has to keep in mind that it is 

based on strict notion of coverage: values in all dimensions have to 

be similar for a project to be similar to another.  Low scores are not 

bad as we will discuss in Section 4.1.  

Our algorithm also measures the coverage for each dimension.  

Here numbers are very promising (see column “All papers of ICSE 

and FSE” in Table 2): for all but one dimension the coverage scores 

exceed 98%, which indicates that research published at ICSE and 

FSE covers a wide spectrum of software in terms of team size, ac-

tivity, and project size.  The lowest score is for programming lan-

guage, but still at an impressive 91.42%.  The unstudied languages 

highlight opportunities for future research: Objective-C is used by 

245, Vim script by 145, Scala by 119, Erlang by 108, and Haskell 

by 99 projects. 

What are showcases of research with high coverage? 
We identified several outstanding papers in terms of coverage.  In 

Table 2, the Columns 3 to 8 show the total coverage score and the 

dimension scores for the five papers with the highest coverage: 

 “A study of the uniqueness of source code” by Gabel and 

Su [3] analyzed over 6,000 projects of which 30 were 

named in the paper and analyzed in depth.  The score is 

computed for only the 30 named projects.  The bulk of the 

corpus is from the source distribution of the Fedora Linux 

distribution (rel. 12).  The authors studied multiple pro-
gramming languages (C, C++, Java). 

 “Semistructured merge: rethinking merge in revision con-

trol systems” by Apel et al. [13] evaluated a merge algo-

rithm on 24 projects written in the C#, Python, and Java 
languages.  

 “On the congruence of modularity and code coupling” by 

Beck and Diehl [14] analyzed 16 small to medium sized 

projects written in Java.  

 “Temporal analysis of API usage concepts” by Uddin et 

al. [15] studied 19 client software projects.  They covered 

a wide spectrum of project size (5.9 to 2991.8 KLOC) but 

given the nature of their study focused on older projects 

with larger amounts of history. 

 “BugRedux: Reproducing field failures for in-house de-

bugging” by Jin and Orso [16] recreated 17 failures of 15 

real world programs.  The size of the projects was between 

0.5 and 241 KLOC. 

Again the total scores seem to be low, which we will discuss in 

Section 4.1.  More importantly however, the numbers in Table II 

allow assessing, which dimensions papers covered well and which 

dimensions need improvement.  For example, Beck and Diehl [14], 

Uddin et al. [15], and Jin and Orso [16] focused on a single pro-

gramming language (Java and C respectively).  To further increase 

the generality, additional languages may be studied.  Another ex-

ample is project age: all three papers focused on older projects, pos-

sibly because they needed long project histories that are only avail-

able for older projects. 

Note that this is not a criticism of this research; these are merely 

ideas on how to increase the coverage of the Ohloh universe.  Also 

note that the relevant target universe may be different for each pa-

per.  For example, research on Java projects may limit itself to a 

Java universe. 

It is noteworthy that several of these papers selected their subjects 

with respect to a dimension that is not included in our space: the 

functionality of the software.  This dimension could be easily added 

to our space and accounted for in our score computation, given the 

availability of data. 

3.5 Data Availability 
All data that has been used for the experiments in this section is 

available at the following URL.  This includes the Ohloh data for 

universe and space and spreadsheets with the conference data. 

http://sailhome.cs.queensu.ca/replication/representativeness/ 

4. DISCUSSION 
Having introduced our technique for assessing the coverage of a 

project sample and demonstrated it on recent software engineering 

research, we now discuss issues surrounding the use of such a tech-

nique in research.  The use is not as straightforward as one might 

think.  Here are some considerations. 

4.1 Understanding (Low) Coverage 
One observation that we have made in the course of using our tech-

niques is that many studies have low levels of coverage.  At first 

glance, one might be tempted to conclude that these studies do not 

contribute much to the body of knowledge in software engineering 

or that others with higher coverage are better.  A low coverage of a 

study does not devalue the research, but rather gives further insight 

into the results. 

For example, Zhou et al.’s recent result that bug report attributes 

can be used to automatically identify the likely location of a fix was 

evaluated on Eclipse JDT, SWT, AspectJ, and ZXing [17].  The 

coverage score for this paper across the Ohloh universe is 0.0028.  

The low coverage does not mean that the results are invalid or not 

useful.  Rather, it yields additional insight into the technique.  For 

example all projects used in this paper were Java and C++ code-

bases aimed at developers (SWT and ZXing are libraries, Eclipse 

JDT and AspectJ are tools for Java development) — for a universe 

of developer-oriented Java libraries and tools, the coverage score 

would likely be higher.  As the paper demonstrated, bugs reported 

against libraries and Java tools contain relevant information to help 

identify fix locations.  Thus, others building on this work might also 

evaluate on Java tools and libraries.  Other avenues of research in-

clude investigating whether the approach also works well for code-

bases where bug reporters are not as likely to be developers. 

Coverage scores do not increase or decrease the importance of 

research, but rather enhance our ability to reason about it. 

4.2 The Quest for Generality  
The discussion from the previous subsection leads to a related 

point.  Few empirical findings in software engineering are com-

pletely general [1].  A finding that is true in the context of large 

scale Java development for enterprise server on a ten year old code-

base may not hold for a relatively new Android widget.  There may 

be fear when reporting results and trying to achieve generality that 

unless some hypothesis is confirmed in all cases, it is does not con-

tribute to the body of knowledge in software engineering and is not 

fit for publication.  This isn’t so. 

Kitchenham’s work on within- and cross-company effort estima-

tion [18] showed that it is indeed possible to estimate effort of one 



 

 

project based on history of others, but that there is no general rule 

for effort estimation.  Rather they used regression analysis to find 

that similarities in the size of the development team, number of web 

pages, and high effort functions between projects in different com-

panies are related to similar effort requirements (i.e., different pro-

jects have different effort requirements, but projects that are similar 

to each other have similar effort needs). 

Knowledge can be synthesized even when empirical results differ 

along dimensions in the space.  Systematic reviews rely upon this 

principle.  The recent review of fault prediction performance by 

Hall et al. [19] essentially constructed a space consisting of model-

ing techniques, metrics used, and granularity and found that fault 

prediction approaches performed differently.  However, they were 

also able to conclude that simpler modeling techniques such as Na-

ïve Bayes and Logistic regression tended to perform the best.  In 

the same way, selecting projects that cover a large area in the pro-

ject universe and examining where results are valid and where they 

are not, does give deeper insight into the research results.  As Mur-

phy-Hill et al. explain, “simply explaining the context in which a 

study occurs goes a long way towards creating impactful research” 

because this allows someone to “decide whether your research ap-

plies to her.” [20] 

Results that differ can still have value, especially in a space that 

is highly covered. 

4.3 Reporting Coverage 
We have provided a technique for computing coverage scores for 

samples and for selecting a sample of software projects with high 

coverage.  While selecting projects in a rigorous and systematic 

way is important, reporting in a consistent and consumable manner 

is just as important. 

Most papers include a summary of characteristics of the projects 

included (e.g., size, age, number of checkins, number of contribu-

tors, language).  This is an appropriate place to report the coverage 

of the selected sample of projects.  As illustrated in Section 3, the 

universe and the space that is used should also be explicitly de-

scribed and the rationale provided.  How was the universe chosen?  

Why was each dimension in the space selected?  For example, one 

might select only Java projects as a universe if a technique only 

makes sense in the context of Java. 

If projects from different parts of the space show different results, 

they should be reported and discussed.  Differences by dimension 

or location in the space provide a unique opportunity to refine the-

ories and investigate further. 

Finally, issues in sampling can affect external validity.  Any poten-

tial problems or gaps in coverage should be discussed in a section 

discussing validity, usually entitled “Threats to Validity” or “Lim-

itations”. 

Always report the universe, space, and configuration with any 

coverage score. 

4.4 Next Steps 
What do we hope will come from this work?  Our goal has not been 

to claim or imply that prior work is flawed, but rather to show that 

we can improve our practice and provide methods to do so.  It is 

our hope that researchers will begin to select projects in a more sys-

tematic way and improve the reporting on why projects were se-

lected.  The concepts introduced in this paper can also be exploited 

for replication studies: either to strictly replicate a study on similar 

samples, or otherwise to replicate on different samples, in order to 

determine whether the previously observed results generalize. 

We realize that different studies and techniques are aimed at differ-

ent problems and thus the goal may not always be to achieve max-

imum coverage of all software projects. Furthermore, the dimen-

sions that people care about may differ.  For instance, when evalu-

ating techniques for mining API rules, the age of each project may 

not be of concern.  Our technique is general enough that researchers 

can define their own universe (the population they want to target 

with their research) and space (the dimensions that are relevant for 

their research).  But it does little good if each study reports its cov-

erage using different and opportunistic spaces and universes.  We 

hope that this work sparks a dialog about diverse and representative 

software engineering research and that some level of consensus on 

what universes and spaces are appropriate will be achieved.  For 

some areas finding appropriate dimensions that relate to generality 

and can be easily quantified might be challenging.  It is likely that 

different subdisciplines will arrive at different answers to these 

questions, which we feel is reasonable.  

5. RELATED WORK 
We identified related work in the areas of representativeness, re-

porting guidelines, and software testing. 

Representativeness  
Some of the earliest research studies on representativeness were by 

Kahneman and Tversky [21] [22].  In their study, they stated that 

the sample size is not related to any property of the population and 

“will have little to no effect on judgment of likelihood”.  In their 

experiments they determined that people's perception of the likeli-

hood of an event depended more on its representativeness to the 

population than the size of it.  Thus they concluded that there is a 

difference between people's judgment and the normative probabil-

ities.  They call this the representative heuristic.  In a more recent 

study, Nilsson et al. [23] investigated the cognitive substrate of the 

representativeness heuristic.  In our study we borrow the concept 

of representativeness from them.  However, unlike their studies, we 

are not evaluating the likelihood of an event or how people's per-

ception differs from the actual probability of an event.  We rather 

propose the means to measure the representatives of the sample 

(software systems used in the case study) to the population (the rel-

evant universe of software). 

Selecting samples for case studies has been a challenge in fields 

such as clinical trials, social sciences, and marketing for decades.  

Hence studies such as the one by Robinson et al. [24] evaluated 

selection biases and their effects on the ability to make inferences 

based on results in clinical trials.  They found that biases did exist; 

certain subgroups were underrepresented (e.g., women) while oth-

ers were overrepresented (e.g., blacks).  Their statistical models 

found that the selection biases may not influence general outcomes 

of the trials, but would affect generalizability of results for select 

subgroups. 

Representativeness in Software Engineering 
Another area of research that often encounters the issue of repre-

sentativeness is the field of systematic literature reviews.  If the set 

of studies selected to be a part of the literature review is not repre-

sentative of the research field under study, then the conclusions of 

the reviews can potentially be biased.  Hence a variety of guidelines 

that are written for conducting systematic literature surveys place a 

large emphasis on the selection of the studies that will be included 

in the review [25] [26] [27] [28].  All the guidelines suggest that 

the researchers conducting the review must make the selection and 



 

 

rejection criteria clear for the reader to place the conclusions in con-

text.  In literature review studies researchers are not looking for a 

representative or diverse but rather a complete sample.  The goal in 

literature reviews is to obtain every possible sample before includ-

ing or rejecting them from the study.  Hence steps such as searching 

the gray area of publications and asking experts in the field are sug-

gested to obtain a more inclusive initial sample. 

One line of research that attempts to rigorously achieve generality 

is the work on the COCOMO cost estimation model by Boehm et 

al. [29].  In this model, they collect software development project 

data and model it in order to help estimate and plan for the cost, 

effort and schedule of a project.  The “Center for Systems and Soft-

ware Engineering” at the University of Southern California to this 

day collects data to have a more representative dataset of projects, 

and to calibrate the model in order to provide better estimates [30].  

Kemerer, in his validation of software cost estimation models, 

found that using an untuned cost estimation model can produce in-

accurate estimates (up to 600% in some cases) [31].  In a more re-

cent study, Chen et al. [32] examined how to prepare the available 

data in order to obtain better estimates.  Unlike Chen et al.'s work, 

we do not provide techniques to pre-process an individual dataset.  

Our research goals are more similar to the research goals of the 

COCOMO model.  The COCOMO model builds a statistical model 

with the available datasets.  Then it tries to fit the current project 

that needs estimation, in this model to determine the particular 

space in the universe that this project belongs to.  We use similar 

concepts, but attempt to determine how diverse the current set of 

projects is in terms of the universe. 

Reporting Guidelines 
There have been several studies in software engineering on guide-

lines for conducting and reporting empirical software engineering 

research. [33] [34] [35] [36] [37].  Most of these studies focus on 

the process to be followed in an empirical study.  One of the com-

mon themes is that all of the studies include a set of guidelines for 

reporting the experimental setting.  This description will help the 

reader in understanding the context of the study, and allows future 

researchers to replicate the study.  With respect to the sample of 

software systems used in the experiments, these studies do not dis-

cuss how to select the sample, but rather discuss what to report 

about the selection.  

Unlike these studies, in our work we present a technique for quan-

tifying the coverage of a sample with respect to a population (uni-

verse), thereby helping people to better understand the context un-

der which the results of a study are applicable. 

Software Testing 
A key step in software development is testing the software to iden-

tify software components that may have bugs due to the current set 

of changes that have been applied to the software. Ideally, in this 

step, it is best to re-run all available test cases to give the best con-

fidence that all components are bug free. However, due to limited 

resources, this may not be possible, and hence a test case selection 

strategy has to be adopted. The primary goal of a test case selection 

strategy is to identify the minimal set of test cases that are required 

to be re-run so that the quality of the entire software can be assured 

at a certain acceptable level. Therefore we can think of test case 

selection as the process of identifying a relevant sample from all 

the available test cases that covers the set of changes made by a 

developer.  

The software testing community has extensively studied test case 

selection strategies [38] [39] [40] [41]. A set of the different ap-

proaches that have been proposed for regression test selection is 

presented in the survey by Yoo and Harman [42]. They identify a 

set of open research problems that have not been received much 

attention in the testing community. Graves et al. [43] and Rother-

mel and Harrold [44], in their respective research also present dif-

ferent test case selection techniques that are available and also em-

pirically compare these techniques. 

Orthogonal array testing [45] is a black box testing technique used 

when the number of inputs to a system is relatively small, but too 

large to allow for exhaustive testing of every possible input to the 

systems.  Permutations are chosen in such a way that responses 

each give a unique piece of information.  Although related, the ap-

proaches for orthogonal array testing are not a good fit for the uni-

verse and spaces described in this paper.  First, there is a large num-

ber of potential input values, for example there are 74 main pro-

gramming languages and many different magnitude for size of pro-

jects in terms of lines of code and developers.  Second, the dimen-

sions in the space are not statistically independent (one of the key 

assumptions of orthogonal array testing) and many of the permuta-

tions identified may not exist in the universe (for example a Haskell 

project with 500+ contributors and only 1-50 commits in the last 

twelve months).  The techniques in this paper consider only projects 

that exist in the universe. 

Similar to picking test cases or parameter values to assure a certain 

level of quality, in our research we intend to pick a set of projects 

from a universe, to be used in a case study that is diverse enough, 

such that the claims made in the case study are more reliable.  At 

the same time there are some differences: for test coverage, a line 

(or method or basic block) has to be actually executed in order to 

be counted for the coverage score. In contrast for sample coverage, 

it is sufficient if a similar project has been included in the sample.  

In addition, test selection strategies have different objectives: they 

optimize test executions in order to reveal failures fast, i.e., the de-

fect detection likelihood.  The techniques presented in this paper 

optimize for maximizing diversity of a sample instead. 

6. CONCLUSION 
With the availability of open source projects, the software engineer-

ing research community is examining an increasing number of soft-

ware projects to test individual hypothesis or evaluate individual 

tools.  However, more is not necessarily better and the selection of 

projects does count as well.  With this paper we provide the re-

search community with a technique to assess how well a research 

study covers a population of software projects.  This helps research-

ers to make informed decisions about which projects to select for a 

study. Our technique has three parameters (universe, space, and 

configuration), which all can be customized based on the research 

topic and should be reported together with the coverage for any 

sample that is scored.   

In our future work, we will further quantify the trade-off between 

efficiency and effectiveness: if one reduces the number of projects, 

while keeping the same coverage one can save time (efficiency), or 

one can increase the number of projects and increase coverage and 

the effectiveness of research. To achieve the maximum effective-

ness for a given experimental effort, it will be important to quantify 

the impact of a lack of coverage on the results reported for software 

engineering experiments.  

We hope that this work sparks a dialog about diverse and repre-

sentative research in software engineering and that some level of 

consensus on appropriate universes and spaces will be reached, 

which likely will differ across different subdisciplines.  We also 

hope that more datasets will become available, that allow us to ex-

plore alternative universes and spaces. 



 

 

Our technique also extends to researchers analyzing closed source 

projects.  They can now describe the universe and space of their 

projects without revealing confidential information about the pro-

jects or their metrics and place their results in context.  Companies 

can use our technique to place academic research into the context 

of their own development by computing the coverage against a 

company-specific universe and space. 
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8. SUPPLEMENTARY INFORMATION 

8.1 How to Compute the Coverage Score 
This example below uses the Ohloh universe to score the Mozilla 

Firefox project along the space (Lines of Code, Developers). The 

text id ~ total_code_lines+twelve_month_contributor 

_count is R syntax and commonly used to define models. 

url <- "http://sailhome.cs.queensu.ca/replica-

tion/representativeness/masterdata.txt" 

ohloh <- read.delim(url, header=T, 

na.strings=c("", "NA")) 

sample <- ohloh[ohloh$name=="Mozilla Firefox",] 

score <- score.projects(sample, universe=ohloh, id 

~ total_code_lines+twelve_month_contributor_count) 

The resulting total score is in score$score and the dimension 

scores are in score$dimension.score. 

8.2 How to Select the Next Projects 
This example adds 10 more projects to the sample from the previ-

ous example. The result is a data frame np$new.projects with 

the projects to be added to the sample and the score object of the 

combined sample np$score. 

np <- next.projects(10, sample, universe=ohloh, id 

~ total_code_lines+twelve_month_contributor_count) 

8.3 How to Change the Configuration 
Provide a list with the similarity functions. Values NA indicates 

that the default similarity function should be used for a dimension. 

In the example below the function custom.similarity will be 

used the first dimension. 

score <- score.projects(sample, universe=ohloh, 

..., configuration=c(custom.similarity, NA)) 
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