

Diversity in Software Engineering Research

Meiyappan Nagappan

Software Analysis and Intelligence Lab
Queen’s University, Kingston, Canada

mei@cs.queensu.ca

Thomas Zimmermann

Microsoft Research
Redmond, WA, USA

tzimmer@microsoft.com

Christian Bird

Microsoft Research
Redmond, WA, USA

Christian.Bird@microsoft.com

ABSTRACT

One of the goals of software engineering research is to achieve gen-

erality: Are the phenomena found in a few projects reflective of

others? Will a technique perform as well on projects other than the

projects it is evaluated on? While it is common sense to select a

sample that is representative of a population, the importance of di-

versity is often overlooked, yet as important. In this paper, we com-

bine ideas from representativeness and diversity and introduce a

measure called sample coverage, defined as the percentage of pro-

jects in a population that are similar to the given sample. We intro-

duce algorithms to compute the sample coverage for a given set of

projects and to select the projects that increase the coverage the

most. We demonstrate our technique on research presented over

the span of two years at ICSE and FSE with respect to a population

of 20,000 active open source projects monitored by Ohloh.net.

Knowing the coverage of a sample enhances our ability to reason

about the findings of a study. Furthermore, we propose reporting

guidelines for research: in addition to coverage scores, papers

should discuss the target population of the research (universe) and

dimensions that potentially can influence the outcomes of a re-

search (space).

Categories and Subject Descriptors

D.2.6 [Software Engineering]: Metrics

General Terms

Measurement, Performance, Experimentation

Keywords

Diversity, Representativeness, Sampling, Coverage

1. INTRODUCTION
Over the past twenty years, the discipline of software engineering

research has grown in maturity and rigor. Researchers have worked

towards maximizing the impact that software engineering research

has on practice, for example, by providing techniques and results

that are as general (and thus as useful) as possible. However,

achieving generality is not easy: Basili et al. [1] remarked that

“general conclusions from empirical studies in software engineer-

ing are difficult because any process depends on a potentially large

number of relevant context variables”.

With the availability of OSS projects, the software engineering re-

search community has moved to more extensive validation. As an

extreme example, the study of Smalltalk feature usage by Robbes

et al. [2] examined 1,000 projects. Another example is the study

by Gabel and Su that examined 6,000 projects [3]. But if care isn’t

taken when selecting which projects to analyze, then increasing the

sample size does not actually contribute to the goal of increased

generality. More is not necessarily better.

As an example, consider a researcher who wants to investigate a

hypothesis about say distributed development on a large number of

projects in an effort to demonstrate generality. The researcher goes

to the json.org website and randomly selects twenty projects, all of

them JSON parsers. Because of the narrow range of functionality

of the projects in the sample, any findings will not be very repre-

sentative; we would learn about JSON parsers, but little about other

types of software. While this is an extreme and contrived example,

it shows the importance of systematically selecting projects for em-

pirical research rather than selecting projects that are convenient.

With this paper we provide techniques to (1) assess the quality of a

sample, and to (2) identify projects that could be added to further

improve the quality of the sample.

Other fields such as medicine and sociology have published and

accepted methodological guidelines for subject selection [2] [4].

While it is common sense to select a sample that is representative

of a population, the importance of diversity is often overlooked yet

as important [5]. As stated by the Research Governance Framework

for Health and Social Care by the Department of Health in the UK:

“It is particularly important that the body of research evi-

dence available to policy makers reflects the diversity of the

population.” [6]

Similarly the National Institutes of Health in the United States de-

veloped guidelines to improve diversity by requiring that certain

subpopulations are included in trials [4]. The aim of such guidelines

is to ensure that studies are relevant for the entire population and

not just the majority group in a population.

Intuitively, the concepts of diversity and representativeness can be

defined as follows:

 Diversity. A diverse sample contains members of every

subgroup in the population and within the sample the

subgroups have roughly equal size. Let’s assume a pop-

ulation of 400 subjects of type X and 100 subjects of type

Y. In this case, a perfectly diverse sample would be 1×X

and 1×Y.

 Representativeness. In a representative sample the size

of each subgroup in the sample is proportional to the size

of that subgroup in the population. In the example above,

a perfectly representative sample would be 4×X and 1×Y.

Note that based on our definitions diversity (“roughly equal size”)

and representativeness (“proportional”) are orthogonal concepts. A

highly diverse sample does not guarantee high representativeness

and vice versa.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior

specific permission and/or a fee.

ESEC/FSE'13, August 18–26, 2013, Saint Petersburg, Russia

Copyright 2013 ACM 978-1-4503-2237-9/13/08... $15.00.

In this paper, we combine ideas from diversity and representative-

ness and introduce a measure called sample coverage, or simply

coverage — defined as the percentage of projects in a population

that are similar to a given sample. Rather than relying on explicit

subgroups that are often difficult to identify in the software domain,

we use implicit subgroups (neighborhoods) based on similarities

between projects; we will discuss details in Section 2.

Sample coverage allows us to assess the quality of a given sample;

the higher the coverage, the better (Section 2.3). Further, it allows

prioritizing projects that could be added to further improve the

quality of a given sample (Section 2.4). Here the idea is to select

projects based on the size of their neighborhood not yet covered by

the sample. In other words, select projects first that add the most

coverage to a sample. This is a hybrid selection strategy: neighbor-

hoods are typically picked only once (reflecting ideas from diver-

sity) but the neighborhoods with the highest coverage are picked

first (reflecting ideas from representativeness).

We make the following contributions with this paper:

1. We introduce a vocabulary (universe, space, and config-

uration) and technique for measuring how well a sample

covers a population of projects.

2. We present a technique for selecting projects in order to

maximize the coverage of a study.

3. We provide a publicly available R implementation of the

algorithms and the data used in this paper. Both have

been successfully evaluated by the ESEC/FSE artifact

evaluation committee and found to meet expectations.

4. We assess the sample coverage of papers over two years

at ICSE and FSE with respect to a population of 20,000

active open source projects and provide guidance for re-

porting project selection.

Understanding the coverage of a sample, can help to understand the

context under which the results are applicable. We hope that the

techniques and recommendations in this paper will be used by re-

searchers to achieve consistent methods of selecting and reporting

projects for their research.

In the rest of this paper, we first present a general technique for

evaluating the coverage of a sample with respect to a population of

software projects and selecting a sample with maximum coverage

(Section 2). We then demonstrate this technique by calculating the

coverage of research over two years at ICSE and FSE (Section 3).

Then, we provide appropriate methods of reporting coverage and

project selection in general and discuss implications (Section 4).

Finally we present related work (Section 5), and our conclusions

(Section 6).

2. SAMPLE COVERAGE
In this section, we present a technique for assessing the coverage of

a sample: we first introduce our terminology (Section 2.1 and 2.2)

followed by algorithms to score the coverage of a sample of pro-

jects (Section 2.3) and select the projects that increase the coverage

the most (Section 2.4).

We implemented both algorithms (from Section 2.3 and 2.4) in the

R programming language [8]; they are available as an R package.

The appendix has a walkthrough on how to use our implementation.

2.1 Universe, Space, and Configuration
The universe is a large set of projects; it is often also called popu-

lation. The universe can vary for different research areas. For ex-

ample, research on mobile phone applications will have a different

universe than web applications.

Possible universes: all open-source projects, all closed-source

projects, all web applications, all mobile phone applications, all
open-source projects on Ohloh, and many others.

Within the universe, each project is characterized with one or more

dimensions.

Possible dimensions: total lines of code, number of developers,

main programming language, project domain, recent activity,
project age, and many others.

The set of dimensions that are relevant for the generality of a re-

search topic define the space of the research topic. Similar to uni-

verses, the space can vary between different research topics. For

example, we expect program analysis research to have a different

space than empirical research on productivity:

Possible space for program analysis research: total lines of code,

main programming language.

Possible space for empirical research on productivity: total lines

of code, number of developers, main programming language,
project domain, recent activity, project age, and likely others.

The goal for a research study should be to provide a high coverage

of the space in a universe. The underlying assumption of this paper

is that projects with similar values in the dimensions—that is they

are close to each other in the space—are representative of each

other. This assumption is commonly made in the software engi-

neering field, especially in effort estimation research [9,10]. For

each dimension d, we define a similarity function that decides

whether two projects p1 and p2 are similar with respect to that di-

mension:

𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑑(𝑝1, 𝑝2) → {true; false}

The list of the similarity functions for a given space is called the

configuration.

configuration 𝐶 = (𝑠𝑖𝑚𝑖𝑙𝑎𝑟1, … , 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑛)

Similar to universe and space, similarity functions (and the config-

uration) can vary across research studies. For some research topics,

projects written in C might be considered similar to projects written

in C++, while for other research they might be considered different.

To identify similar projects within the universe, we require the pro-

jects to be similar to each other in all dimensions.

𝑠𝑖𝑚𝑖𝑙𝑎𝑟(𝑝1, 𝑝2) = ⋀ 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑑(𝑝1, 𝑝2)
𝑑

If no similarity function is defined for a dimension, we assume the

following default functions, with p[d] the value of project p in di-

mension d and |e| the absolute (positive) value of the specified ex-

pression e:

 For numeric dimensions (e.g., number of developers): We

consider two projects to be similar in a dimension if their

values are in the same order of magnitude (as computed
by log10 and expressed by the 0.5 threshold below).

𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑑(𝑝1, 𝑝2) → |log10 𝑝1[𝑑] − log10 𝑝2[𝑑]| ≤ 0.5

 For categorical dimensions (e.g., main programming lan-

guage): We consider two projects to be similar in a di-
mension if the values are identical.

𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑑(𝑝1, 𝑝2) → 𝑝1[𝑑] = 𝑝2[𝑑]

As mentioned above the similarity functions can be overridden in a

configuration. Different configurations may exist for different re-

search topics and areas. The distinction into numerical and cate-

gorical dimensions is a simplification as not all measurements of

software are on a numerical and absolute scale. Measurements that

are on ordinal scale could easily be accounted for with custom sim-

ilarity functions.

2.2 Example: Coverage and Project Selection
Figure 1(a) shows a sample universe and a sample space: the uni-

verse contains 50 projects, each represented by a point. The space

is defined by two dimensions: the number of developers (horizon-

tal) and the number of lines of code (vertical). In practice, the uni-

verse can be thousands of projects and the space can be defined by

numerous dimensions, not just two. We will present a more com-

plex instantiation of our framework in Section 3.

Consider project A in Figure 1(a) which is represented by an en-

larged point. The light gray areas indicate the projects that are sim-

ilar to project A in one dimension (based on the similarity functions

that are defined in the configuration). The intersection of the light

gray areas (the dark gray area) indicates the projects that are similar

to A with respect to the entire space. In total seven other projects

are similar to A. Thus project A covers (7+1)/50=16% of the uni-

verse. We can also compute coverage for individual dimensions:

project A covers 13/50=26% for number of developers and

11/50=22% for lines of code.

Figure 1(b) illustrates how a second project increases the coverage:

 If we add project B, ten additional projects are covered, the

universe coverage increase to 18/50=36%. The coverage

of the developer and lines of code dimensions increases to
60% and 56% respectively.

 However, if we add project C instead of project B, there is

only little impact on coverage. All similar projects have

been already covered because project C is close to project

A. Thus the universe coverage increases only to 18%.

B

A

Developers

Li

n
es

 o
f

C
o

d
e

Developers

A

C

 (a) (b)

Fig. 1. Sample universe of 50 projects defined by a two-di-

mensional space. (a) The light gray areas indicate projects

similar to project A in one dimension. The dark gray areas

indicate projects similar to project A in both dimensions.

(b) Project B increases the coverage of the space more than

project C does, because C is too similar to projects already

covered by project A.

This illustrates an important point: to provide a good coverage of

the universe, one should select projects that are diverse rather than

similar to each other. We now introduce algorithms to score the

coverage (score_projects) and to select additional projects such that

the coverage is maximized (next_projects).

2.3 Computing Coverage
We compute the sample coverage of a set of projects P for a given

universe U, an n-dimensional space D, and a configuration

(𝑠𝑖𝑚𝑖𝑙𝑎𝑟1, … , 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑛) as follows. (Recall that the definition of

similar is 𝑠𝑖𝑚𝑖𝑙𝑎𝑟 = 𝑠𝑖𝑚𝑖𝑙𝑎𝑟1 ∧ … ∧ 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑛)

𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒 =
|⋃ {𝑞|𝑠𝑖𝑚𝑖𝑙𝑎𝑟(𝑝, 𝑞)}𝑝∈𝑃 |

|𝑈|

As discussed before, research topics can have different parameters

for universe, space, and configuration. Therefore it is important to

not just report the coverage but also the context in which it was

computed: What projects, is the research intending to be relevant

ALGORITHM I. Scoring Projects

𝐬𝐜𝐨𝐫𝐞_𝐩𝐫𝐨𝐣𝐞𝐜𝐭𝐬(projects 𝑃, universe 𝑈, space 𝐷, config 𝐶):
1: 𝑐_𝑠𝑝𝑎𝑐𝑒 ← ∅
2: 𝑐_𝑑𝑖𝑚 ← [∅, … , ∅]
3: for each project 𝑝 ∈ 𝑃:
4: 𝑐_𝑝𝑟𝑜𝑗𝑒𝑐𝑡 ← 𝑈
5: for each dimension 𝑑 ∈ 𝐷:
6: 𝑎𝑟𝑒_𝑠𝑖𝑚𝑖𝑙𝑎𝑟(𝑝, 𝑞) ← 𝐶[𝑑](𝑝, 𝑞)
7: 𝑠𝑖𝑚_𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑠 ← {𝑞|𝑎𝑟𝑒_𝑠𝑖𝑚𝑖𝑙𝑎𝑟(𝑝, 𝑞)}
8: 𝑐_𝑝𝑟𝑜𝑗𝑒𝑐𝑡 ← 𝑐_𝑝𝑟𝑜𝑗𝑒𝑐𝑡 ∩ 𝑠𝑖𝑚_𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑠
9: 𝑐_𝑑𝑖𝑚[𝑑] ← 𝑐_𝑑𝑖𝑚[𝑑] ∪ 𝑠𝑖𝑚_𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑠
10: 𝑐_𝑠𝑝𝑎𝑐𝑒 ← 𝑐_𝑠𝑝𝑎𝑐𝑒 ∪ 𝑐_𝑝𝑟𝑜𝑗𝑒𝑐𝑡
11: 𝑠𝑐𝑜𝑟𝑒 ← |𝑐_𝑠𝑝𝑎𝑐𝑒|/|𝑈|
12: 𝑑𝑖𝑚_𝑠𝑐𝑜𝑟𝑒 ← apply(𝑐_𝑑𝑖𝑚, 𝑋 → |𝑋|/|𝑈|)
13: return (𝑠𝑐𝑜𝑟𝑒, 𝑑𝑖𝑚_𝑠𝑐𝑜𝑟𝑒)

ALGORITHM II. Selecting the Next Projects

𝐧𝐞𝐱𝐭_𝐩𝐫𝐨𝐣𝐞𝐜𝐭𝐬(𝐾, projects 𝑃, universe 𝑈, space 𝐷, config 𝐶):

1: 𝑟𝑒𝑠𝑢𝑙𝑡 ← []
2: 𝑠𝑖𝑚𝑖𝑙𝑎𝑟(𝑝, 𝑞) = 𝐶[1](𝑝, 𝑞) ∧ … ∧ 𝐶[𝑑](𝑝, 𝑞)
3: 𝑐_𝑠𝑝𝑎𝑐𝑒 ← ⋃ {𝑞|𝑠𝑖𝑚𝑖𝑙𝑎𝑟(𝑝, 𝑞)}𝑝∈𝑃

4: 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 ← 𝑈 − 𝑃
5: for 𝑖 ∈ {1, … , 𝐾}:
6: 𝑐_𝑏𝑒𝑠𝑡 ← ∅
7: 𝑝_𝑏𝑒𝑠𝑡 ← NA
8: for each candidate 𝑝 ∈ 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠:
9: 𝑐_𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 ← {𝑞|𝑠𝑖𝑚𝑖𝑙𝑎𝑟(𝑝, 𝑞)}
10: 𝑐_𝑛𝑒𝑤 ← (𝑐_𝑠𝑝𝑎𝑐𝑒 ∪ 𝑐_𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒) − 𝑐_𝑠𝑝𝑎𝑐𝑒
11: if |𝑐_𝑛𝑒𝑤| > |𝑐_𝑏𝑒𝑠𝑡|:
12: 𝑐_𝑏𝑒𝑠𝑡 ← 𝑐_𝑛𝑒𝑤
13: 𝑝_𝑏𝑒𝑠𝑡 ← 𝑝
14: if 𝑝_𝑏𝑒𝑠𝑡 = NA:
15: break
16: 𝑟𝑒𝑠𝑢𝑙𝑡 ← append(𝑟𝑒𝑠𝑢𝑙𝑡, 𝑝_𝑏𝑒𝑠𝑡)
17: 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 ← 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 − {𝑝_𝑏𝑒𝑠𝑡}
18: 𝑐_𝑠𝑝𝑎𝑐𝑒 ← 𝑐_𝑠𝑝𝑎𝑐𝑒 ∪ 𝑐_𝑏𝑒𝑠𝑡
19: return (𝑟𝑒𝑠𝑢𝑙𝑡)

for (universe)? What criteria matter for findings to hold for other

projects (space, configuration)?

To compute the coverage for a set of projects, we implemented the

algorithm shown in Algorithm I in R. For each project 𝑝 ∈ 𝑃, the

algorithm computes the set of projects c_project that are covered

by p (Lines 3-10). As a naming convention we use the prefix c_ in

variable names for sets of covered projects. In addition, the algo-

rithm computes the projects c_dim[d] covered by each dimension

d (Line 9). After iterating through the set P, the algorithm com-

putes the coverage score within the entire space (Line 11) and for

each dimension (Line 12). The apply function maps the function

𝑋 → |𝑋|/|𝑈| to the vector c_dim and returns a vector with the re-

sult.

2.4 Project Selection
In order to guide project selection in such a way that the coverage

of a sample is maximized, we implemented the greedy algorithm

that is shown in Algorithm II. The input to the algorithm is the

number K of projects to be selected, a set of already selected pro-

jects P, a universe U, an n-dimensional space D, and a configura-

tion 𝐶 = (𝑠𝑖𝑚𝑖𝑙𝑎𝑟1, … , 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑛).

The algorithm returns a list of up to K projects; the list is ordered

decreasingly based on how much the projects increase the coverage

of the space. The set of preselected projects P can be empty. By

calling the algorithm with 𝑃 = ∅ and 𝐾 = |𝑈| one can order the

entire universe of projects based on their coverage increase and re-

turns the subset of projects that is needed to cover the entire uni-

verse (for a score of 100%).

The main part of the algorithm is the loop in Lines 5-18 that is re-

peated at most K times. The loop is exited early (Lines 14-15) when

no project is found that increases the coverage; in this case the en-

tire universe has been covered (score of 100%). The algorithm

maintains a candidate set of projects (candidates), which is initial-

ized to the projects in universe U but not in P (Line 4, we

use − to denote set difference). The body of the main loop com-

putes for each candidate 𝑝 ∈ 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 (Lines 8-13) how much

its coverage (Line 9) would increase the current coverage c_space

(Line 10) and memorizes the maximum increase (Lines 11-13). At

the end of an iteration i, the project p_best with the highest coverage

increase is appended to the result list and then removed from the

candidates list (Lines 16-17); the current coverage c_space is up-

dated to include the projects in c_best (Line 18).

Our R implementation includes several optimizations that are not

included in Algorithm I for the sake of comprehension. To reduce

the cost of set operations we use index vectors in R (similar to bit

vectors). Computing the projects similar to a candidate in Line 9 is

an expensive operation and we therefore cache the results across

loop iterations. Lastly, starting from the second iteration, we do

process candidates in Line 10 in decreasing order of their |𝑐_𝑛𝑒𝑤|
values from the previous iteration. The |𝑐_𝑛𝑒𝑤| values from itera-

tion 𝑖 − 1 are an upper bound of how much a candidate can con-

tribute to the coverage in iteration 𝑖. If the current best increase
|𝑐_𝑏𝑒𝑠𝑡| in iteration 𝑖 is greater or equal than the previous increase
|𝑐_𝑛𝑒𝑤| of the current candidate in iteration 𝑖 − 1, we can exit the

inner loop (Lines 8-13) and skip the remaining candidates. This

optimization significantly reduces the search space for projects.

2.5 Implementation in R
The R implementation of the algorithms for computing coverage

and selecting next projects is publicly available:

http://sailhome.cs.queensu.ca/replication/representativeness/

3. THE OHLOH CASE STUDY
In this section we provide an example of how to apply our tech-

nique and illustrate how it can be used to quantify the coverage of

software engineering research.

3.1 The Ohloh Universe
We chose as universe the active projects that are monitored by the

Ohloh platform [11]. Ohloh is a social coding platform that collects

data such as main programming language, number of developers,

licenses, as well as software metrics (lines of code, activity statis-

tics, etc.). Note that the Ohloh data is just one possible universe

and there are many other universes that could be used for similar

purposes.

To collect data to describe the projects in the universe, we used the

following steps:

1. We extracted the identifiers of active projects using the

Project API of Ohloh. We decided to include only active

projects in the universe because we wanted to measure

coverage for ongoing development. We followed Richard

Sands’ definition [12] of an active project, that is, a project

that had at least one commit and at least 2 committers in
the last 12 months.

2. For each project identifier, we extracted three different

categories of data (each with one call to the API). The

first is the Analysis category which has data about main

programming language, source code size and contributors.

The second is the Activity category which summarizes

how much source code developers have changed each

month (commits, churn). We accumulated the activity

data for the period of June 2011 to May 2012. Finally, we

collected what is called the Factoid category. This cate-

gory contains basic observations about projects such as

team size, project age, comment ratio, and license con-
flicts.

3. We aggregated the XML files returned by the Ohloh APIs

and converted them into tab-separated text files using a

custom script. We removed projects from the universe

that had missing data (156 projects had no main language

or an incomplete code analysis) or invalid data (40 pro-

jects had a negative number for total lines of code).

After selecting only active projects and removing projects with

missing and invalid data, the universe consists of a total of 20,028

projects. This number is comparable to the number of active pro-

jects reported by Richard Sands [12].

3.2 The Ohloh Space
We use the following dimensions for the space. The list of dimen-

sions is inspired by the comparison feature in Ohloh. The data for

the dimensions is provided by Ohloh.

 Main language. The most common programming lan-

guage in the project. Ohloh ignores XML and HTML

when making this determination.

 Total lines of code. Blank lines and comment lines are ex-

cluded by Ohloh when counting lines of code.

 Number of contributors (12 months). Contributors with at
least one commit in the last 12 months.

 Number of churn (12 months). Number of added and de-

leted lines of code, excluding comment lines and blank
lines, in the last 12 months.

 Number of commits (12 months). Commits made in the last
12 months.

 Project age. The Ohloh factoid for project age: projects

less than 1 year old are Young, between 1 year and 3 years

they are Normal, between 3 and 5 years they are Old, and
above 5 years they are Very Old.

 Project activity. The Ohloh factoid for project activity: if

during the last 12 calendar months, there were at least 25%

fewer commits than in the prior 12 months, the activity is

Decreasing; if there were 25% more commits, the activity

is Increasing; otherwise the activity is Stable.

In our case, metrics for the last 12 months are for the period of June

2011 to May 2012. Again this is just one possible space and there

will be other dimensions that can be relevant for the generality of

research.

Figure 2 shows the distributions of the dimensions in our dataset.

There are over 70 programming languages captured in the Ohloh

dataset; the most frequently used languages are Java, Python, C,

and JavaScript. A large number of projects are very small in terms

of size, people, and activity: 4,937 projects are less than 2,000 lines

of code; yet 713 projects exceed a million lines of code. Many pro-

jects have only 2 contributors (7,235 projects) and not more than

50 commits (10,528 projects) in the last 12 months. Again there

are extreme cases with hundreds of contributors and thousands of

commits.

3.3 Covering the Ohloh Universe
As a first experiment, we computed the set of projects required to

cover the entire population of 20,028 Ohloh projects. For this we

called the next_projects algorithm with N=20,028, an empty initial

project list P, and the default configuration (see Section 2.1).

𝐧𝐞𝐱𝐭_𝐩𝐫𝐨𝐣𝐞𝐜𝐭𝐬(𝑁 = 20028, projects 𝑃 = ∅, universe 𝑈
= ohloh, space 𝐷, config 𝐶)

Figure 3 shows the results with a cumulative sum plot. Each point

(x,y) in the graph indicates that the first x projects returned by

next_projects covered y percent of the Ohloh universe. The first 50

projects (or 2.5%) covered 15.3% of the universe, 392 projects cov-

ered 50%, and 5030 projects covered the entire universe.

In Table 1 we show the first 15 projects returned by the algorithm

next_projects. These are the projects that increase the coverage of

the space the most. We draw the following conclusions. First,

small software projects written in dynamic languages dominate the

list (seven of the first nine are in Ruby or Python and under 2000

LOC). Are researchers exploring the problems faced by these pro-

jects? Even when considering all 15 projects, these projects to-

gether comprise less than 200,000 LOC and just over 1,000 com-

mits, an order of magnitude lower than for Apache HTTP, Mozilla

Firefox, or Eclipse JDT. The time and space required to analyze or

evaluate on these projects are fairly low, providing a ripe oppor-

tunity for researchers to achieve impact without large resource de-

mands. This result also counters a common criticism of some soft-

ware engineering research: some people expect that research al-

ways has to scale to large software and pay less attention to smaller

projects. However, as Table I and Figure 2 show, the space covered

by smaller projects is non-negligible.

3.4 Covering the Ohloh Universe with the

ICSE and FSE Conferences
We now apply our technique instantiated with the Ohloh universe

to papers from premiere conferences in the software engineering

field: the International Conference on Software Engineering

(ICSE) and Foundations of Software Engineering (FSE). This sec-

tion does not mean to make general conclusions about the entire

Fig. 2. Histograms of the dimensions in the Ohloh universe.

Fig. 3. Number of projects that are needed to cover the Ohloh

universe. Each point in the graph means that x projects can

cover y percent of the universe.

software engineering community. Rather results should only be

viewed in the context of the papers in those two years of those two

conferences (ICSE 2011, 2012 and FSE 2010, 2011).

To create the dataset the first author read each (full) paper of the

main technical research track in each conference, looked for the

software projects that were analyzed and recorded the number

and—if mentioned—the names of the projects in a spreadsheet. We

then queried Ohloh for each of the software projects to find the cor-

responding identifier, which we used to cross-reference the data

with our corpus.

Some projects we could not cross reference with our dataset be-

cause of any one of the following reasons: (a) the project was not

indexed by Ohloh; (b) the paper used an aggregated set of projects,

and particular projects were not named in the paper; (c) the project

does not meet the criteria to be included in the universe, e.g., the

project has not been under development in the past year, has only

one developers, or has missing or invalid data.

The analysis of the ICSE and FSE conferences revealed several

large-scale studies that analyzed hundreds if not thousands of pro-

jects. Some of these papers we had to exclude from our analysis as

they either analyzed closed-source projects or did not report the

names of the individual projects analyzed or analyzed inactive

Ohloh projects.

What are the most frequently used projects in the

ICSE and FSE conferences?
We found 635 unique projects that were analyzed by the ICSE and

FSE conferences in the two-year period. Out of these we could map

207 to the universe of active Ohloh projects.

The most frequently studied projects were the Eclipse Java Devel-

opment Tools (JDT) in 16 papers, Apache HTTP Server in 12 pa-

pers, gzip, jEdit, Apache Xalan C++, and Apache Lucene each in 8

papers and Mozilla Firefox in 7 papers. Another frequently studied

project is Linux, which was analyzed in 12 papers. While the Linux

project is listed on Ohloh, the code analysis has not yet completed

TABLE 1. The first 15 projects returned by 𝐧𝐞𝐱𝐭_𝐩𝐫𝐨𝐣𝐞𝐜𝐭𝐬(𝑵 = 𝟐𝟎𝟎𝟐𝟖, projects 𝑷 = ∅, universe 𝑼 = ohloh, space 𝑫, config 𝑪)

with the increase in coverage

Name Language Lines Contributors Commits Churn Age Activity Increase

serialize_with_options Ruby 301 2 10 147 Normal Increasing 0.574%

Java Chronicle Java 3892 4 81 8629 Young Stable 0.569%

Hike Ruby 616 3 11 333 Normal Stable 0.559%

Talend Service Factory Java 20295 8 162 27803 Normal Stable 0.549%

OpenObject Library Python 1944 5 36 1825 Normal Stable 0.459%

ruote-amqp-pyclient Python 315 4 7 139 Normal Stable 0.454%

sign_server Python 1791 3 63 3415 Young Stable 0.414%

redcloth-formatters-plain Ruby 655 4 5 82 Normal Decreasing 0.384%

python-yql Python 1933 2 11 93 Normal Decreasing 0.369%

mraspaud's mpop Python 12664 7 160 22124 Normal Stable 0.369%

appengine-toolkit JavaScript 18253 5 110 20572 Normal Stable 0.364%

socket.io-java Java 23533 4 187 46254 Young Stable 0.335%

Glinux C 41052 8 55 3114 Very Old Decreasing 0.335%

Pax URL Java 31467 7 73 6923 Old Decreasing 0.330%

Honeycrm Java 14864 2 45 3810 Normal Decreasing 0.315%

TABLE 2. The representativeness of all ICSE and FSE papers in the past 2 years as well as the five most representative papers. The

universe is the active Ohloh projects, the space is (Main language, Total lines of code, Contributors, Churn, Commits, Project age,

Project activity) and the configuration consists of the default similarity functions.

All papers of

ICSE and FSE

(past 2 years)

Gabel and Su.

Uniqueness of

source code

Apel et al.

Semistructured

merge

Beck and Diehl.

Modularity and

code coupling

Uddin et al.

Analysis of API

usage concepts

Jin and Orso.

Reproducing

field failures

Score 9.15% 1.09% 0.85% 0.81% 0.73% 0.67%

Main language 91.42% 48.57% 43.62% 15.07% 15.07% 12.37%

Total lines of code 99.29% 65.82% 57.06% 55.98% 32.30% 61.93%

Contributors (12 months) 100.00% 99.94% 99.79% 99.13% 99.77% 96.94%

Churn (12 months) 98.08% 70.45% 70.68% 79.32% 62.51% 51.58%

Commits (12 months) 100.00% 97.98% 96.93% 97.68% 56.12% 67.78%

Project age 100.00% 88.80% 43.75% 20.39% 20.39% 20.39%

Project activity 100.00% 100.00% 100.00% 100.00% 100.00% 59.83%

and only limited information is available (no activity, no lines of

code). Therefore we ignored Linux from our analysis.

How much of the Ohloh universe do the ICSE and

FSE conferences cover?
The 207 Ohloh projects analyzed in the two years of the ICSE and

FSE conferences covered 9.15% of the Ohloh population. At a first

glance this score seems low, but one has to keep in mind that it is

based on strict notion of coverage: values in all dimensions have to

be similar for a project to be similar to another. Low scores are not

bad as we will discuss in Section 4.1.

Our algorithm also measures the coverage for each dimension.

Here numbers are very promising (see column “All papers of ICSE

and FSE” in Table 2): for all but one dimension the coverage scores

exceed 98%, which indicates that research published at ICSE and

FSE covers a wide spectrum of software in terms of team size, ac-

tivity, and project size. The lowest score is for programming lan-

guage, but still at an impressive 91.42%. The unstudied languages

highlight opportunities for future research: Objective-C is used by

245, Vim script by 145, Scala by 119, Erlang by 108, and Haskell

by 99 projects.

What are showcases of research with high coverage?
We identified several outstanding papers in terms of coverage. In

Table 2, the Columns 3 to 8 show the total coverage score and the

dimension scores for the five papers with the highest coverage:

 “A study of the uniqueness of source code” by Gabel and

Su [3] analyzed over 6,000 projects of which 30 were

named in the paper and analyzed in depth. The score is

computed for only the 30 named projects. The bulk of the

corpus is from the source distribution of the Fedora Linux

distribution (rel. 12). The authors studied multiple pro-
gramming languages (C, C++, Java).

 “Semistructured merge: rethinking merge in revision con-

trol systems” by Apel et al. [13] evaluated a merge algo-

rithm on 24 projects written in the C#, Python, and Java
languages.

 “On the congruence of modularity and code coupling” by

Beck and Diehl [14] analyzed 16 small to medium sized

projects written in Java.

 “Temporal analysis of API usage concepts” by Uddin et

al. [15] studied 19 client software projects. They covered

a wide spectrum of project size (5.9 to 2991.8 KLOC) but

given the nature of their study focused on older projects

with larger amounts of history.

 “BugRedux: Reproducing field failures for in-house de-

bugging” by Jin and Orso [16] recreated 17 failures of 15

real world programs. The size of the projects was between

0.5 and 241 KLOC.

Again the total scores seem to be low, which we will discuss in

Section 4.1. More importantly however, the numbers in Table II

allow assessing, which dimensions papers covered well and which

dimensions need improvement. For example, Beck and Diehl [14],

Uddin et al. [15], and Jin and Orso [16] focused on a single pro-

gramming language (Java and C respectively). To further increase

the generality, additional languages may be studied. Another ex-

ample is project age: all three papers focused on older projects, pos-

sibly because they needed long project histories that are only avail-

able for older projects.

Note that this is not a criticism of this research; these are merely

ideas on how to increase the coverage of the Ohloh universe. Also

note that the relevant target universe may be different for each pa-

per. For example, research on Java projects may limit itself to a

Java universe.

It is noteworthy that several of these papers selected their subjects

with respect to a dimension that is not included in our space: the

functionality of the software. This dimension could be easily added

to our space and accounted for in our score computation, given the

availability of data.

3.5 Data Availability
All data that has been used for the experiments in this section is

available at the following URL. This includes the Ohloh data for

universe and space and spreadsheets with the conference data.

http://sailhome.cs.queensu.ca/replication/representativeness/

4. DISCUSSION
Having introduced our technique for assessing the coverage of a

project sample and demonstrated it on recent software engineering

research, we now discuss issues surrounding the use of such a tech-

nique in research. The use is not as straightforward as one might

think. Here are some considerations.

4.1 Understanding (Low) Coverage
One observation that we have made in the course of using our tech-

niques is that many studies have low levels of coverage. At first

glance, one might be tempted to conclude that these studies do not

contribute much to the body of knowledge in software engineering

or that others with higher coverage are better. A low coverage of a

study does not devalue the research, but rather gives further insight

into the results.

For example, Zhou et al.’s recent result that bug report attributes

can be used to automatically identify the likely location of a fix was

evaluated on Eclipse JDT, SWT, AspectJ, and ZXing [17]. The

coverage score for this paper across the Ohloh universe is 0.0028.

The low coverage does not mean that the results are invalid or not

useful. Rather, it yields additional insight into the technique. For

example all projects used in this paper were Java and C++ code-

bases aimed at developers (SWT and ZXing are libraries, Eclipse

JDT and AspectJ are tools for Java development) — for a universe

of developer-oriented Java libraries and tools, the coverage score

would likely be higher. As the paper demonstrated, bugs reported

against libraries and Java tools contain relevant information to help

identify fix locations. Thus, others building on this work might also

evaluate on Java tools and libraries. Other avenues of research in-

clude investigating whether the approach also works well for code-

bases where bug reporters are not as likely to be developers.

Coverage scores do not increase or decrease the importance of

research, but rather enhance our ability to reason about it.

4.2 The Quest for Generality
The discussion from the previous subsection leads to a related

point. Few empirical findings in software engineering are com-

pletely general [1]. A finding that is true in the context of large

scale Java development for enterprise server on a ten year old code-

base may not hold for a relatively new Android widget. There may

be fear when reporting results and trying to achieve generality that

unless some hypothesis is confirmed in all cases, it is does not con-

tribute to the body of knowledge in software engineering and is not

fit for publication. This isn’t so.

Kitchenham’s work on within- and cross-company effort estima-

tion [18] showed that it is indeed possible to estimate effort of one

project based on history of others, but that there is no general rule

for effort estimation. Rather they used regression analysis to find

that similarities in the size of the development team, number of web

pages, and high effort functions between projects in different com-

panies are related to similar effort requirements (i.e., different pro-

jects have different effort requirements, but projects that are similar

to each other have similar effort needs).

Knowledge can be synthesized even when empirical results differ

along dimensions in the space. Systematic reviews rely upon this

principle. The recent review of fault prediction performance by

Hall et al. [19] essentially constructed a space consisting of model-

ing techniques, metrics used, and granularity and found that fault

prediction approaches performed differently. However, they were

also able to conclude that simpler modeling techniques such as Na-

ïve Bayes and Logistic regression tended to perform the best. In

the same way, selecting projects that cover a large area in the pro-

ject universe and examining where results are valid and where they

are not, does give deeper insight into the research results. As Mur-

phy-Hill et al. explain, “simply explaining the context in which a

study occurs goes a long way towards creating impactful research”

because this allows someone to “decide whether your research ap-

plies to her.” [20]

Results that differ can still have value, especially in a space that

is highly covered.

4.3 Reporting Coverage
We have provided a technique for computing coverage scores for

samples and for selecting a sample of software projects with high

coverage. While selecting projects in a rigorous and systematic

way is important, reporting in a consistent and consumable manner

is just as important.

Most papers include a summary of characteristics of the projects

included (e.g., size, age, number of checkins, number of contribu-

tors, language). This is an appropriate place to report the coverage

of the selected sample of projects. As illustrated in Section 3, the

universe and the space that is used should also be explicitly de-

scribed and the rationale provided. How was the universe chosen?

Why was each dimension in the space selected? For example, one

might select only Java projects as a universe if a technique only

makes sense in the context of Java.

If projects from different parts of the space show different results,

they should be reported and discussed. Differences by dimension

or location in the space provide a unique opportunity to refine the-

ories and investigate further.

Finally, issues in sampling can affect external validity. Any poten-

tial problems or gaps in coverage should be discussed in a section

discussing validity, usually entitled “Threats to Validity” or “Lim-

itations”.

Always report the universe, space, and configuration with any

coverage score.

4.4 Next Steps
What do we hope will come from this work? Our goal has not been

to claim or imply that prior work is flawed, but rather to show that

we can improve our practice and provide methods to do so. It is

our hope that researchers will begin to select projects in a more sys-

tematic way and improve the reporting on why projects were se-

lected. The concepts introduced in this paper can also be exploited

for replication studies: either to strictly replicate a study on similar

samples, or otherwise to replicate on different samples, in order to

determine whether the previously observed results generalize.

We realize that different studies and techniques are aimed at differ-

ent problems and thus the goal may not always be to achieve max-

imum coverage of all software projects. Furthermore, the dimen-

sions that people care about may differ. For instance, when evalu-

ating techniques for mining API rules, the age of each project may

not be of concern. Our technique is general enough that researchers

can define their own universe (the population they want to target

with their research) and space (the dimensions that are relevant for

their research). But it does little good if each study reports its cov-

erage using different and opportunistic spaces and universes. We

hope that this work sparks a dialog about diverse and representative

software engineering research and that some level of consensus on

what universes and spaces are appropriate will be achieved. For

some areas finding appropriate dimensions that relate to generality

and can be easily quantified might be challenging. It is likely that

different subdisciplines will arrive at different answers to these

questions, which we feel is reasonable.

5. RELATED WORK
We identified related work in the areas of representativeness, re-

porting guidelines, and software testing.

Representativeness
Some of the earliest research studies on representativeness were by

Kahneman and Tversky [21] [22]. In their study, they stated that

the sample size is not related to any property of the population and

“will have little to no effect on judgment of likelihood”. In their

experiments they determined that people's perception of the likeli-

hood of an event depended more on its representativeness to the

population than the size of it. Thus they concluded that there is a

difference between people's judgment and the normative probabil-

ities. They call this the representative heuristic. In a more recent

study, Nilsson et al. [23] investigated the cognitive substrate of the

representativeness heuristic. In our study we borrow the concept

of representativeness from them. However, unlike their studies, we

are not evaluating the likelihood of an event or how people's per-

ception differs from the actual probability of an event. We rather

propose the means to measure the representatives of the sample

(software systems used in the case study) to the population (the rel-

evant universe of software).

Selecting samples for case studies has been a challenge in fields

such as clinical trials, social sciences, and marketing for decades.

Hence studies such as the one by Robinson et al. [24] evaluated

selection biases and their effects on the ability to make inferences

based on results in clinical trials. They found that biases did exist;

certain subgroups were underrepresented (e.g., women) while oth-

ers were overrepresented (e.g., blacks). Their statistical models

found that the selection biases may not influence general outcomes

of the trials, but would affect generalizability of results for select

subgroups.

Representativeness in Software Engineering
Another area of research that often encounters the issue of repre-

sentativeness is the field of systematic literature reviews. If the set

of studies selected to be a part of the literature review is not repre-

sentative of the research field under study, then the conclusions of

the reviews can potentially be biased. Hence a variety of guidelines

that are written for conducting systematic literature surveys place a

large emphasis on the selection of the studies that will be included

in the review [25] [26] [27] [28]. All the guidelines suggest that

the researchers conducting the review must make the selection and

rejection criteria clear for the reader to place the conclusions in con-

text. In literature review studies researchers are not looking for a

representative or diverse but rather a complete sample. The goal in

literature reviews is to obtain every possible sample before includ-

ing or rejecting them from the study. Hence steps such as searching

the gray area of publications and asking experts in the field are sug-

gested to obtain a more inclusive initial sample.

One line of research that attempts to rigorously achieve generality

is the work on the COCOMO cost estimation model by Boehm et

al. [29]. In this model, they collect software development project

data and model it in order to help estimate and plan for the cost,

effort and schedule of a project. The “Center for Systems and Soft-

ware Engineering” at the University of Southern California to this

day collects data to have a more representative dataset of projects,

and to calibrate the model in order to provide better estimates [30].

Kemerer, in his validation of software cost estimation models,

found that using an untuned cost estimation model can produce in-

accurate estimates (up to 600% in some cases) [31]. In a more re-

cent study, Chen et al. [32] examined how to prepare the available

data in order to obtain better estimates. Unlike Chen et al.'s work,

we do not provide techniques to pre-process an individual dataset.

Our research goals are more similar to the research goals of the

COCOMO model. The COCOMO model builds a statistical model

with the available datasets. Then it tries to fit the current project

that needs estimation, in this model to determine the particular

space in the universe that this project belongs to. We use similar

concepts, but attempt to determine how diverse the current set of

projects is in terms of the universe.

Reporting Guidelines
There have been several studies in software engineering on guide-

lines for conducting and reporting empirical software engineering

research. [33] [34] [35] [36] [37]. Most of these studies focus on

the process to be followed in an empirical study. One of the com-

mon themes is that all of the studies include a set of guidelines for

reporting the experimental setting. This description will help the

reader in understanding the context of the study, and allows future

researchers to replicate the study. With respect to the sample of

software systems used in the experiments, these studies do not dis-

cuss how to select the sample, but rather discuss what to report

about the selection.

Unlike these studies, in our work we present a technique for quan-

tifying the coverage of a sample with respect to a population (uni-

verse), thereby helping people to better understand the context un-

der which the results of a study are applicable.

Software Testing
A key step in software development is testing the software to iden-

tify software components that may have bugs due to the current set

of changes that have been applied to the software. Ideally, in this

step, it is best to re-run all available test cases to give the best con-

fidence that all components are bug free. However, due to limited

resources, this may not be possible, and hence a test case selection

strategy has to be adopted. The primary goal of a test case selection

strategy is to identify the minimal set of test cases that are required

to be re-run so that the quality of the entire software can be assured

at a certain acceptable level. Therefore we can think of test case

selection as the process of identifying a relevant sample from all

the available test cases that covers the set of changes made by a

developer.

The software testing community has extensively studied test case

selection strategies [38] [39] [40] [41]. A set of the different ap-

proaches that have been proposed for regression test selection is

presented in the survey by Yoo and Harman [42]. They identify a

set of open research problems that have not been received much

attention in the testing community. Graves et al. [43] and Rother-

mel and Harrold [44], in their respective research also present dif-

ferent test case selection techniques that are available and also em-

pirically compare these techniques.

Orthogonal array testing [45] is a black box testing technique used

when the number of inputs to a system is relatively small, but too

large to allow for exhaustive testing of every possible input to the

systems. Permutations are chosen in such a way that responses

each give a unique piece of information. Although related, the ap-

proaches for orthogonal array testing are not a good fit for the uni-

verse and spaces described in this paper. First, there is a large num-

ber of potential input values, for example there are 74 main pro-

gramming languages and many different magnitude for size of pro-

jects in terms of lines of code and developers. Second, the dimen-

sions in the space are not statistically independent (one of the key

assumptions of orthogonal array testing) and many of the permuta-

tions identified may not exist in the universe (for example a Haskell

project with 500+ contributors and only 1-50 commits in the last

twelve months). The techniques in this paper consider only projects

that exist in the universe.

Similar to picking test cases or parameter values to assure a certain

level of quality, in our research we intend to pick a set of projects

from a universe, to be used in a case study that is diverse enough,

such that the claims made in the case study are more reliable. At

the same time there are some differences: for test coverage, a line

(or method or basic block) has to be actually executed in order to

be counted for the coverage score. In contrast for sample coverage,

it is sufficient if a similar project has been included in the sample.

In addition, test selection strategies have different objectives: they

optimize test executions in order to reveal failures fast, i.e., the de-

fect detection likelihood. The techniques presented in this paper

optimize for maximizing diversity of a sample instead.

6. CONCLUSION
With the availability of open source projects, the software engineer-

ing research community is examining an increasing number of soft-

ware projects to test individual hypothesis or evaluate individual

tools. However, more is not necessarily better and the selection of

projects does count as well. With this paper we provide the re-

search community with a technique to assess how well a research

study covers a population of software projects. This helps research-

ers to make informed decisions about which projects to select for a

study. Our technique has three parameters (universe, space, and

configuration), which all can be customized based on the research

topic and should be reported together with the coverage for any

sample that is scored.

In our future work, we will further quantify the trade-off between

efficiency and effectiveness: if one reduces the number of projects,

while keeping the same coverage one can save time (efficiency), or

one can increase the number of projects and increase coverage and

the effectiveness of research. To achieve the maximum effective-

ness for a given experimental effort, it will be important to quantify

the impact of a lack of coverage on the results reported for software

engineering experiments.

We hope that this work sparks a dialog about diverse and repre-

sentative research in software engineering and that some level of

consensus on appropriate universes and spaces will be reached,

which likely will differ across different subdisciplines. We also

hope that more datasets will become available, that allow us to ex-

plore alternative universes and spaces.

Our technique also extends to researchers analyzing closed source

projects. They can now describe the universe and space of their

projects without revealing confidential information about the pro-

jects or their metrics and place their results in context. Companies

can use our technique to place academic research into the context

of their own development by computing the coverage against a

company-specific universe and space.

7. ACKNOWLEDGMENTS
We would like to thank our colleagues at the SAIL lab at Queen’s

University and at the ESE group at Microsoft Research as well as

the anonymous reviewers of ESEC/FSE and the artifact evaluation

committee for valuable feedback on this idea and paper. We would

also like to thank all the researchers whose work we looked at!

Lastly, we would like to thank Black Duck Software and Ohloh

(www.ohloh.net) for collecting and making the data available.

8. SUPPLEMENTARY INFORMATION

8.1 How to Compute the Coverage Score
This example below uses the Ohloh universe to score the Mozilla

Firefox project along the space (Lines of Code, Developers). The

text id ~ total_code_lines+twelve_month_contributor

_count is R syntax and commonly used to define models.

url <- "http://sailhome.cs.queensu.ca/replica-

tion/representativeness/masterdata.txt"

ohloh <- read.delim(url, header=T,

na.strings=c("", "NA"))

sample <- ohloh[ohloh$name=="Mozilla Firefox",]

score <- score.projects(sample, universe=ohloh, id

~ total_code_lines+twelve_month_contributor_count)

The resulting total score is in score$score and the dimension

scores are in score$dimension.score.

8.2 How to Select the Next Projects
This example adds 10 more projects to the sample from the previ-

ous example. The result is a data frame np$new.projects with

the projects to be added to the sample and the score object of the

combined sample np$score.

np <- next.projects(10, sample, universe=ohloh, id

~ total_code_lines+twelve_month_contributor_count)

8.3 How to Change the Configuration
Provide a list with the similarity functions. Values NA indicates

that the default similarity function should be used for a dimension.

In the example below the function custom.similarity will be

used the first dimension.

score <- score.projects(sample, universe=ohloh,

..., configuration=c(custom.similarity, NA))

9. REFERENCES
[1] Basili, V.R., Shull, F., and Lanubile, F. Building knowledge

through families of experiments. Software Engineering,

IEEE Transactions on, 25 (1999), 456--473.

[2] Callaú, O., Robbes, R., Tanter, E., and Rothlisberger, D.

How developers use the dynamic features of programming

languages: the case of smalltalk. Proceedings of the

International Working Conference on Mining Software

Repositories (2011).

[3] Gabel, M. and Su, Z. A study of the uniqueness of source

code. In FSE'10: Proceedings of the International

Symposium on Foundations of Software Engineering

(2010), 147-156.

[4] NIH. NIH Guideline on The Inclusion of Women and

Minorities. , 2001.

http://grants.nih.gov/grants/funding/women_min/guideline

s_amended_10_2001.htm.

[5] Allmark, P. Should research samples reflect the diversity of

the population? Journal Medical Ethics , 30 (2004), 185-

189.

[6] DEPARTMENT OF HEALTH. Research governance

framework for health and social care. , 2001.

[7] Mulrow, C.D., Thacker, S.B., and Pugh, J.A. A proposal for

more informative abstracts of review articles. Annals of

internal medicine, 108 (1988), 613--615.

[8] The R Project for Statistical Computing. http://www.r-

project.org/.

[9] Kitchenham, B.A., Mendes, E., and Travassos, G.H. Cross

versus Within-Company Cost Estimation Studies: A

Systematic Review. IEEE Trans. Software Eng. (TSE), 33,

5 (2007), 316-329.

[10] Hill, P.R. Practical Software Project Estimation. McGraw-

Hill Osborne Media, 2010.

[11] BLACK DUCK SOFTWARE. Ohloh,

http://www.ohloh.net/.

[12] Sands, R. Measuring Project Activity.

http://meta.ohloh.net/2012/04/measuring-project-activity/.

2012.

[13] Apel, S., Liebig, J., Brandl, B., Lengauer, C., and Kästner,

C. Semistructured merge: rethinking merge in revision

control systems. In ESEC/FSE'11: European Software

Engineering Conference and Symposium on Foundations of

Software Engineering (2011), 190-200.

[14] Beck, F. and Diehl, S. On the congruence of modularity and

code coupling. In ESEC/FSE'11: European Software

Engineering Conference and Symposium on Foundations of

Software Engineering (2011), 354-364.

[15] Uddin, G., Dagenais, B., and Robillard, M.P. Temporal

analysis of API usage concepts. In ICSE'12: Proceedings of

34th International Conference on Software Engineering

(2012), 804-814.

[16] Jin, W. and Orso, A. BugRedux: Reproducing field failures

for in-house debugging. In ICSE'12: Proceedings of 34th

International Conference on Software Engineering (2012),

474-484.

[17] Zhou, J., Zhang, H., and Lo, D. Where should the bugs be

fixed? More accurate information retrieval-based bug

localization based on bug reports. In International

Conference on Software Engineering (2012).

[18] Kitchenham, B.A. and Mendes, E. A comparison of cross-

company and within-company effort estimation models for

web applications. In Proceedings of the 8th International

Conference on Empirical Assessment in Software

Engineering (2004), 47-55.

[19] Hall, T., Beecham, S., Bowes, D., Gray, D., and Counsell,

S. A systematic review of fault prediction performance in

software engineering. IEEE Transactions on Software

Engineering, 99 (2011).

[20] Murphy-Hill, E., Murphy, G.C., and Griswold, W.G.

Understanding Context: Creating a Lasting Impact in

Experimental Software Engineering Research. In

Proceedings of the Workshop on Future of Software

Engineering (2010), 255-258.

[21] Kahneman, D. and Tversky, A. Subjective probability: A

judgment of representativeness. Cognitive Psychology, 3

(1972), 430 - 454.

[22] Tversky, A. and Kahneman, D. Judgment under

Uncertainty: Heuristics and Biases. Science, 185 (1974), pp.

1124-1131.

[23] Nilsson, H., Juslin, P., and Olsson, H. Exemplars in the

mist: The cognitive substrate of the representativeness

heuristic. Scandinavian Journal of Psychology, 49, 201--

212.

[24] Robinson, D., Woerner, M.G., Pollack, S., and Lerner, G.

Subject Selection Biases in Clinical Trials: Data From a

Multicenter Schizophrenia Treatment Study. Journal of

Clinical Psychopharmacology, 16, 2 (April 1996), 170-176.

[25] Khan, K.S. et al., eds. NHS Centre for Reviews and

Dissemination, University of York, 2001.

[26] Kitchenham, B. Procedures for undertaking systematic

reviews. Technical Report TR/SE-0401, Department of

Computer Science, Keele University and National ICT,

Australia Ltd (2004).

[27] Brereton, P., Kitchenham, B.A., Budgen, D., Turner, M.,

and Khalil, M. Lessons from applying the systematic

literature review process within the software engineering

domain. Journal of Systems and Software, 80 (2007), 571 -

583.

[28] Standards for Systematic Reviews..

www.iom.edu/Reports/2011/Finding-What-Works-in-

Health-Care-Standards-for-Systematic-

Reviews/Standards.aspx?page=2.

[29] Boehm, B.W., Abts, C., Brown, A.W., Chulani, S., Clark,

B.K., Horowitz, E., Madachy, R., Reifer, D.J., and Steece,

B.t.=.S.C.E.w.C.I. NHS Centre for Reviews and

Dissemination, University of York, 2000.

[30] Center for Systems and Software Engineering..

http://csse.usc.edu/csse/research/COCOMOII/cocomo_mai

n.html.

[31] Kemerer, C.F. An empirical validation of software cost

estimation models. Commun. ACM, 30 (may 1987), 416--

429.

[32] Chen, Z., Menzies, T., Port, D., and Boehm, D. Finding the

right data for software cost modeling. Software, IEEE, 22

(nov.-dec. 2005), 38 - 46.

[33] Wohlin, C., Runeson, P., Host, M., Ohlsson, M.C., Regnell,

B., and Wesslen, A. Experimentation in software

engineering: an introduction. Kluwer Academic Publishers,

2000.

[34] Kitchenham, B.A., Pfleeger, S.L., Pickard, L.M., Jones,

P.W., Hoaglin, D.C., Emam, E.K., and Rosenberg, J.

Preliminary Guidelines for Empirical Research in Software

Engineering. IEEE Transactions on Software Engineering,

28 (aug 2002), 721--734.

[35] Jedlitschka, A. and Pfahl, D. Reporting guidelines for

controlled experiments in software engineering. In

Empirical Software Engineering, 2005. 2005 International

Symposium on (nov. 2005), 10 pp.

[36] Kitchenham, B., Al-Khilidar, H., Babar, M.A., Berry, M.,

Cox, K., Keung, J., Kurniawati, F., Staples, M., Zhang, H.,

and Zhu, L. Evaluating guidelines for reporting empirical

software engineering studies. Empirical Softw. Engg., 13

(feb 2008), 97--121.

[37] Runeson, P. and Host, M. Guidelines for conducting and

reporting case study research in software engineering.

Empirical Softw. Engg., 14 (Apr 2009), 131--164.

[38] Harrold, M.J., Jones, J.A., Li, T., Lian, D., Orso, A.,

Pennings, M., Sinha, S., Spoon, S.A., and Gujarathi, A.

Regression test selection for Java software. In OOPSLA '01:

Proceedings of the 16th ACM SIGPLAN conference on

Object-oriented programming, systems, languages, and

applications (2001).

[39] Briand, L.C., Labiche, Y., and Soccar, G. Automating

impact analysis and regression test selection based on UML

designs. In ICSM '02: Proceedings of the International

Conference on Software Maintenance (2002), 252-261.

[40] Marré, M. and Bertolino, A. Using spanning sets for

coverage testing. IEEE Transactions on Software

Engineering, 29, 11 (Nov 2003), 974-984.

[41] Li, Z., Harman, M., and Hierons, R.M. Search Algorithms

for Regression Test Case Prioritization. IEEE Transactions

on Software Engineering, 33, 4 (April 2007), 225-237.

[42] Yoo, S. and Harman, M. Regression testing minimization,

selection and prioritization: a survey. Software Testing,

Verification and Reliability, 22, 2 (2012), 67-120.

[43] Graves, T.L., Harrold, M.J., Kim, J.-M., Porter, A., and

Rothermel, G. An empirical study of regression test

selection techniques. In ICSE '98: Proceedings of the 20th

International Conference on Software engineering (1998),

188-197.

[44] Rothermel, G. and Harrold, M.J. Analyzing regression test

selection techniques. IEEE Transactions on Software

Engineering, 22, 8 (August 1996), 529-551.

[45] Harrell, J.M. Orthogonal Array Testing Strategy (OATS). ,

2001.

http://www.51testing.com/ddimg/uploadsoft/20090113/O

ATSEN.pdf.

	1. Introduction
	2. Sample Coverage
	2.1 Universe, Space, and Configuration
	2.2 Example: Coverage and Project Selection
	2.3 Computing Coverage
	2.4 Project Selection
	2.5 Implementation in R

	3. The Ohloh Case Study
	3.1 The Ohloh Universe
	3.2 The Ohloh Space
	3.3 Covering the Ohloh Universe
	3.4 Covering the Ohloh Universe with the ICSE and FSE Conferences
	What are the most frequently used projects in the ICSE and FSE conferences?
	How much of the Ohloh universe do the ICSE and FSE conferences cover?
	What are showcases of research with high coverage?

	3.5 Data Availability

	4. Discussion
	4.1 Understanding (Low) Coverage
	4.2 The Quest for Generality
	4.3 Reporting Coverage
	4.4 Next Steps

	5. Related Work
	Representativeness
	Representativeness in Software Engineering
	Reporting Guidelines
	Software Testing

	6. Conclusion
	7. Acknowledgments
	8. Supplementary Information
	8.1 How to Compute the Coverage Score
	8.2 How to Select the Next Projects
	8.3 How to Change the Configuration

	9. References

