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Abstract—As a software project ages, its source code is
modified to add new features, restructure existing ones, and
fix defects. These source code changes often induce changes
in the build system, i.e., the system that specifies how source
code is translated into deliverables. However, since developers
are often not familiar with the complex and occasionally archaic
technologies used to specify build systems, they may not be able
to identify when their source code changes require accompanying
build system changes. This can cause build breakages that slow
development progress and impact other developers, testers, or
even users. In this paper, we mine the source and test code
changes that required accompanying build changes in order to
better understand this co-change relationship. We build random
forest classifiers using language-agnostic and language-specific
code change characteristics to explain when code-accompanying
build changes are necessary based on historical trends. Case
studies of the Mozilla C++ system, the Lucene and Eclipse open
source Java systems, and the IBM Jazz proprietary Java system
indicate that our classifiers can accurately explain when build co-
changes are necessary with an AUC of 0.60-0.88. Unsurprisingly,
our highly accurate C++ classifiers (AUC of 0.88) derive much
of their explanatory power from indicators of structural change
(e.g., was a new source file added?). On the other hand, our Java
classifiers are less accurate (AUC of 0.60-0.78) because roughly
75% of Java build co-changes do not coincide with changes to
the structure of a system, but rather are instigated by concerns
related to release engineering, quality assurance, and general
build maintenance.

I. INTRODUCTION

Build systems specify how source code is translated into
deliverables. Often supporting hundreds of configurations [1]]
and specified using thousands of build files (e.g., make or
ant files) [2], build systems are complex systems of their
own. Such complex build systems require regular maintenance
in order to continue functioning correctly. Our prior work
shows that, from release to release, source code and build
system tend to co-evolve [3| 4], i.e., changes to the source code
can induce changes in the build system, and vice versa. This
continual build maintenance generates considerable overhead
on development activities [2} 5H7]].

The overhead generated by the build system is exacerbated
by the difficulty of identifying the code changes that require
accompanying build system changes. Seo et al. show that
30%-37% of builds triggered by Google developers on their
local copies of the source code are broken, with neglected
build maintenance being the most commonly detected root
cause [8]. If those build breakages are not fixed before the
changes are committed to upstream repositories, then their

team as a whole will be negatively impacted. For example,
Kwan et al. find that 31% (60/191) of the studied IBM team
builds were broken [9]. Furthermore, Hassan and Zhang find
that 15% (209/1,429) of the studied IBM certification builds
(i.e., builds that the development team believed were ready for
testing) were broken [10]. These broken team builds prevent
quality assurance teams from reproducing and testing actively
developed versions of a system in a timely fashion, slowing
development progress and the release process.

In order to avoid these costly build breakages, we set out
to explore the following central question:

Can build changes be fully explained using charac-
teristics of co-changed source and test code files?

For this purpose, we construct random forest classifiers
using language-agnostic and language-specific characteristics
of source and test code changes to understand when build
changes are required. Through case studies of the Mozilla
system (primarily implemented using C++), and three Java
systems, we address the following three research questions:

(RQ1) How often are build changes accompanied by
source/test code changes?
Only a minority of the source/test code changes re-
quire accompanying build changes (4%-26%), with
the majority of those build changes co-occurring with
source/test code changes (53%-88%).

(RQ2) Can we accurately explain when build co-changes
are necessary using code change characteristics?
Yes, our classifiers can explain the source and test
code changes that require accompanying build changes
with an AUC of 0.60-0.88. Our Java classifiers are less
accurate than the C++ classifiers (AUC of 0.60-0.78
vs. 0.88) because 75% (+10%) of Java build changes
are not related to changes to the structure of a system.

(RQ3) What are the most influential code change charac-
teristics for explaining build co-changes?
Our Mozilla (C++) classifiers derive much of their ex-
planatory power from indicators of structural changes
like adding new source files. On the other hand,
since Java build co-changes rarely coincide with these
structural changes, our Java classifiers derive most of
their explanatory power from the historical co-change
tendencies of the modified files and deeper code
change characteristics like the addition or removal of
import statements that reference non-core APIs.



Paper organization. The remainder of the paper is organized
as follows. Section [[I| highlights the importance of consistency
between source code and build system. Section |III| describes
our case study design, while Sections and |V| present the
results with respect to our three research questions. Section
discusses threats to the validity of our study. Section
surveys related work. Finally, Section [VIII]draws conclusions.

II. THE IMPORTANCE OF MAINTAINING CONSISTENCY
BETWEEN SOURCE CODE AND BUILD SYSTEM

Build systems orchestrate order-dependent compiler and
tool invocations in order to create project deliverables, and are
often implemented in terms of: (1) a configuration layer for
selecting tools and features (e.g., Android back-end vs. Win-
dows back-end); and (2) a construction layer for producing
deliverables based on configuration choices [3| i4].

Executing the complex builds of large software systems can
be prohibitively expensive, often taking hours, if not days to
complete. For example, Windows builds of the Firefox system
take more than two and a half hours to complete on dedicated
build machines Hassan and Zhang report that certification
builds of a large IBM system take more than 24 hours to
complete [10]. The lengthy and expensive build processes can
slow development progress if the builds are frequently broken.

Such build breakages can often be linked to inconsisten-
cies between the source code and the build system. Indeed,
despite the strong link between the source code and the build
system, developers in large teams are often not familiar with
the internal structure of the build system [2]]. This lack of
familiarity is problematic, since it may cause developers to
miss build changes when they are necessary, leading to build
breakages [8] or even worse, producing incorrect deliverables.
For example, Mozilla defect 417037E] describes how end users
in a networked environment were unable to use the web
browser address and search bars. It was not until months later
that the issue, an incorrect library version picked up by the
build system, was fixed.

In order to avoid inconsistencies between the source code
and the build system, we set out to better understand the code
changes that require accompanying build changes. Specifically,
we mine historical repositories to construct classifiers that use
characteristics of source and test code changes to understand
when accompanying build changes are required.

III. CASE STUDY DESIGN

In this section, we present our rationale for selecting our
research questions, describe the studied systems, and present
our data extraction and analysis approaches.

(RQ1) How often are build changes accompanied by
source/test code changes?
If the majority of work items containing build changes
do not contain accompanying source or test code
changes, then code change characteristics would make

Uhttp://tbpl.mozilla.org/
Zhttps://bugzilla.mozilla.org/show_bug.cgi?id=417037

poor indicators of build change. Hence, before building
our classifiers, we want to know how frequently build
and source/test code co-change.

Can we accurately explain when build co-changes
are necessary using code change characteristics?
Prior work has shown that classifiers can be built to
accurately explain phenomena in software engineer-
ing [10H14]. We conjecture that such classifiers can
be built to accurately explain when a build change is
necessary using code change characteristics.

What are the most influential code change charac-
teristics for explaining build co-changes?

Knowing which code change characteristics are influ-
ential indicators of build change could help practition-
ers to identify code changes that require accompanying
build changes.

(RQ2)

(RQ3)

A. Studied Systems

In order to address our research questions, we study one
large system primarily implemented using C++ and three sys-
tems primarily implemented using Java. The studied systems
are of different sizes and domains in order to combat potential
bias in our conclusions. More importantly, the studied systems
carefully record co-change data at the work item level (see
below), which is a critical precondition for our co-change
analysis. The scarcity of carefully recorded work item data in
practice prevents us from analyzing a larger sample of systems.

Table ([ provides an overview of the studied systems. Mozilla
is a suite of internet tools including the Firefox web browser.
Eclipse is an Integrated Development Environment (IDE), of
which we studied the core subsystem. Lucene is a library
offering common search indexing functionality. IBM JaZZT
is a proprietary next-generation IDE.

B. Data Extraction

Software projects evolve through continual change in the
source code, test code, build system, and other artifacts.
Changes to a file are often collected in file patches that
show the differences between subsequent revisions of a single
file. These file patches are typically logged in a Version
Control System (VCS). In addition to logging file patches,
modern VCSs track transactions (a.k.a., atomic commits), i.e.,
collections of file patches that authors commit together.

A work item is a development task such as fixing a bug,
adding a new feature, or restructuring an existing feature.
Several transactions may be required to complete a work item,
since developers from different teams may need to collaborate.
Work items are often logged in an Issue Tracking System (ITS)
like Bugzilla or IBM Jazz and branded with a unique identifier.
This ID helps to identify the transactions that are associated
with a work item.

We extract work item data from each of the studied systems
in order to address our research questions. Figure [I] provides
an overview of our approach, for which the data extraction

3http://www.jazz.net. IBM and Jazz are trademarks of IBM Corporation in
the US, other countries, or both.
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TABLE I

CHARACTERISTICS OF T

HE STUDIED PROJECTS.

Project Mozilla Eclipse-core Lucene Jazz
Domain Internet Suite IDE Search Indexing Library IDE
Timeframe 1998 — 2010 2001- 2010 2010 - 2013 2007 — 2008
# Project Files 123,175 5,490 18,811 67,357
Source Files (#, % of total) 43,952 35% 2,391 43% 8,879 47% 45,275 67%
Test Files (#, % of total) 30,835 25% 1,211 22% 4,898 26% 14,738 22%
Build Files (#, % of total) 10,709 9% 477 9% 421 2% 5,967 9%
Other Files (#, % of total) 37,679 31% 1,411 26% 4,613 25% 1,377 2%
# Transactions 210,400 6,391 9,856 36,557
# Work Items 55,199 2,452 3,280 11,611
# Transactions with Work Items 79,242 38% 4,092 64% 6,046 61% 22,485 62%
Source Work Items (#, % work items) 45,815 83% 2,130 87% 2,553 78% 9,869 85%
Test Work Items (#, % work items) 9,383 17% 765 31% 2,084 64% 2,786 24%
Build Work Items (#, % work items) 14,477 26% 427 17% 443 14% 608 5%
Other Work Items (#, % work items) 5,275 10% 165 7% 254 8% 973 8%
Source-Build Co-Change Work Items (#, % source, % build) 12,450 27%, 86% 350 16%, 82% 194 6%, 44% 437 4%, 12%
Test-Build Co-Change Work Items (#, % test, % build) 4,198 45%, 29% 154 20%, 36% 183 9%, 41% 219 8%, 36%
Source- or Test-Build Co-Change Work Items (#, % source and test) 12,698 26% 382 17% 234 7% 468 4%
Build without Source or Test Work Items (#, % build) 1,779 12% 82 19% 209 47% 140 23%
Data Extraction (DE) Data Analysis (DA)
[Repeated 10 times for cross-validation]
(DE 1) T i Training CEDA-;-)
Version B Eracton e (DE 3) (DE 4) ] Conifrsulclﬁgn Random (DA 2) AN
(DE 2) —— Transact_ion > Work Ite_m Fore_s_t Classifier Results
File Type Tagged Files Summarizer Aggregation Classifier Evaluation
Classification Corpus

Fig. 1. An overview of our data extraction and analysis approaches.

component is broken down into four steps. We briefly describe
each step of our data extraction approach below.

(DE 1) Patch extraction. After gathering the VCS archives
for each studied project, we extract all transactions as well
as authorship, timestamps, and commit message metadata.
Although the studied systems use different VCSs (i.e., Git
and Mercurial), we wrote scripts to extract transactions and
metadata in a common format.

(DE 2) File type classification. In order to assess whether
a transaction (and hence, a work item) impacts the build
system, we use the file type classification process from our
prior work [2], which tags each file in a project history as
either a source, test, or build file. Build system files include
helper scripts, as well as construction and configuration layer
specifications (such as make or ant files). Source code files
implement software logic. Test code files contain automated
tests that check the software for regressions.

The file type classification process was semi-automatic.
Table [[] lists the number of files classified under each category
for the studied systems. Most files could be classified using
filename conventions, e.g., file extensions. However, many
extensions were ambiguous, e.g., “.xml”. After classifying un-
ambiguous file types, the remaining files were classified manu-
ally. For example, of the 123,175 Mozilla files, approximately
20,000 files remained unclassified after all known filename
conventions were exhausted. Through manual inspection, we
found project-specific extension types that could be classified
automatically, further reducing the number of unclassified
files to roughly 5,000. The remaining 5,000 or so files were
classified manually.

(DE 3) Transaction summarizer. Next, we produce transac-
tion summaries for all transactions that contain source, test,
and/or build file changes, which consist of: (1) measured
characteristics that describe the code change, and (2) a boolean
value noting whether or not at least one build file was changed.
A summary of the measured code change characteristics and
the rationale for their use is given in Table

(DE 4) Work item aggregation. Our prior work has shown
that transactions are too fine-grained to accurately depict
development tasks [2]]. It may take several transactions to
resolve a work item. In such cases, build changes often appear
in different transactions than the corresponding source or test
code changes. To avoid missing cases of co-change, we group
transactions that address the same work item together by
examining the transaction commit messages for work item IDs.
Bias Assessment. As shown in Table [, the aggregation to
work items is lossy, since it relies heavily on developer be-
haviour to link transactions to work items. Overall, 38%-64%
of the transactions can be connected to work items. The lack
of well-linked work item data is a known problem [15} [16].
Hence, we first evaluate whether the lossy nature of work item
aggregation introduces bias in our dataset. We are primarily
concerned with two types of bias:

1) Time periods in project history may be missing due to
the lossy nature of work item aggregation, i.e., we only
have work item data for certain time periods.

2) Work item linkage may be a property of project expe-
rience [15], i.e., experienced developers might be more
likely to provide the links to work items in their commits.

To study the extent of these biases, we compare the number



A TAXONOMY OF THE STUDIED CODE CHANGE CHARACTERISTICS. EACH IS MEASURED ONCE FOR SOURCE CODE AND ONCE FOR TEST CODE.

TABLE I

Rationale

Adding new source files changes the structural layout
of the codebase, which may require accompanying
build changes to include the new file.

Deleting old source files changes the structural layout
of the codebase, which may require accompanying
build changes to disregard the dead file.

Renaming a source file alters the structural layout of
the codebase, invalidating prior dependencies while
creating new ones, which may require accompanying
build changes.

With the exception of the special language-specific
cases (see below), modification of source code
should rarely require build changes, since modifica-
tions do not alter the structure of a system.

Historical co-change tendencies may provide insight
into future co-change trends.

Changes that impact more files may be more likely
to require accompanying build changes.

Dependency changes may need to propagate to the
build system.

Adding or removing dependencies indicates that a
new dependency may have been introduced or an old
one relaxed. Such changes may need to propagate to
the build system.

Adding or removing dependencies on core lan-
guage APIs will not have an impact on the build
process, and hence may introduce noise in the

Added/removed dependencies metric.

Attribute Name Type Definition
File added Boolean | True if a given work item adds new source or test
files.
File deleted Boolean | True if a given work item deletes old source or test
files.
g File renamed Boolean | True if a given work item renames source or test
2 files.
&0
<
S
s | File modified Boolean | True if a given work item modifies existing source
o0 or test files.
3
Prior  build co- | Numeric | For each source and test file involved in a given work
changes™ item, we compute the proportions of prior work items
that were build co-changing. We select the maximum
proportion of the work item’s changed files.
Number of files™ Numeric | The number of source and test files that were in-
volved in a given work item.
Changed Boolean | True if a given work item adds or removes dependen-
dependencies cies on other code through #include preprocessor
directives for C++ code or import statements in
Java code.
o | Added/removed Boolean | True if the dependency being: (1) added does not
% dependencies appear in any other source or test file, or (2) removed
g has been completely removed from all source and
(f‘) test files.
e | Added/removed non- | Boolean | True if the conditions listed for Added/removed
5 | core dependencies dependencies are satisfied by a dependency that is
5 not part of the core language API.
Changed conditional | Boolean | True if a given work item adds new or removes old
compilation (C++ #if[n][def] preprocessor directives.
only)

Conditional compilation is often used to control
platform- or feature-specific functionality in the
source or test code. The conditions for these blocks
of code often depend on configuration layer settings.

* Could not be calculated for Jazz due to privacy concerns.

of transactions per month to the number of work items per
month and study how these measures evolve over time. We
also compare developer contributions in terms of the number
of transactions and work items. Figure[2] visualizes these distri-
butions using beanplots [17]]. Beanplots are boxplots in which
the vertical curves summarize the distributions of different
datasets. The horizontal black lines indicate the median values.
Due to differences in scale, we separate the Java beanplots
(Figure from the Mozilla one (Figure [2c).

Figures [2a] and [2b| show that Eclipse-core, Lucene, and Jazz
share highly symmetrical beanplots, indicating that transac-
tions and work items share similar temporal and developer
contribution characteristics. The median lines in Jazz and
Lucene are almost identical, while the median of the work
items is higher than that of the transactions in the Eclipse-
core project. The slight difference in medians indicates that the
work item granularity introduces minimal skew with respect
to the transaction data.

The asymmetrical nature of the Mozilla plot in Figure 23]
shows that there is skew introduced, i.e., very few transac-
tions could be linked to work items in the initial Mozilla
development months. Once the practice of recording the work
item ID in the commit message was more firmly established,
the symmetry of the beanplot increases, indicating that the
temporal characteristics between the two datasets are similar

from that point on. To resolve this, we removed the initial
12 development months of Mozilla prior to performing our
case study. Figure [2c| shows that this filtering also makes the
distribution of Mozilla developer contributions less skewed,
i.e., the bias in our data has been controlled.

C. Data Analysis

Figure[I|provides an overview of our data analysis approach.
The work items are split into training and testing corpora.
Classifiers are constructed using the training corpus, and their
performance is evaluated on work items in the testing corpus.
We briefly describe each step in our analysis below.

(DA 1) Classifier Construction. We use the random forest
technique to construct classifiers (one for each studied system)
that explain when build changes are necessary. The random
forest technique constructs a large number of decision trees
at training time [18]. Each node in a decision tree is split
using a random subset of all of the attributes. Performing this
random split ensures that all of the trees have a low correlation
between them [18]]. Since each tree in the forest may report
a different outcome, the final class of a work item is decided
by aggregating the votes from all trees and deciding whether
the final score is higher than a chosen threshold.

(DA 2) Classifier Evaluation. To evaluate the performance
of a classifier, we use it to classify work items in a testing
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Fig. 2. Comparison of the time and developer distribution of transactions (black) and work items (grey).

corpus and compare its deduction against the known result. To
obtain the testing corpus and evaluate the performance of our
classifiers, we use tenfold cross-validation. Cross-validation
splits the data into ten equal parts, using nine parts for the
training corpus, setting aside one for the testing corpus. The
process is repeated ten times, using a different part for the
testing corpus each time.

Table shows the confusion matrix constructed based on
the cross-validation classification results. The performance of
the decision tree is measured in terms of recall, precision, F-
measure, and AUC. We describe each metric below.

¢ Recall: Of all known build co-changing work items, how

many were classified as such, i.e., ﬁ
o Precision: Of the work items that are classified as build
co-changing, how many actually did co-change, i.e., ;%.

o F-measure: The harmonic mean of precision and recall,
precision-recall
ie., 2. e
preczswn-‘rreca

o Area Under the Curve (AUCQ): The area under the curve
that plots true positive rate (aT-b) against the false positive
rate (H%), for various values of the chosen threshold
used to determine whether a work item is classified
as build co-changing. Values of AUC range between
0 (worst classifier performance) and 1 (best classifier
performance).

We first construct classifiers using only the language-
agnostic characteristics from Table [, We then add language-
specific characteristics to the classifiers.

Handling imbalanced categories. Table [I| shows that build
co-changing work items are the minority category (4%-26%).
Classifiers tend to favour the majority category, since it offers
more explanatory power, i.e., classification of “no build change
needed” will likely be more accurate than classification of
“build change needed”. To combat the bias of imbalanced cat-
egories, we re-balance the training corpus to improve minority

TABLE III
AN EXAMPLE CONFUSION MATRIX.

Classified As
Actual Category | Change No Change
Change a b

No Change c d

category performance [11} [19]. Re-balancing is not applied to
the testing corpus.

We chose to re-balance the data using a re-sampling tech-
nique, which removes samples from the majority category
(under-sampling) and repeats samples in the minority category
(over-sampling). We chose to re-sample rather than apply
other re-balancing techniques like re-weighing (i.e., assigning
more weight to correctly classified minority items) because we
found that re-sampling yielded slightly better results, which is
consistent with findings reported in the literature [11} [20]].

Re-sampling is performed with a given bias [ towards
equally distributed categories (8 = 1). No re-sampling is
performed when [ 0. Values between 0 < [ < 1
vary between unmodified categories and equally distributed
categories. We report findings for different values of f.

IV. MozILLA CASE STUDY RESULTS (C++)

In this section, we present the results of our Mozilla case
study with respect to our three research questions. For each
research question, we present our approach for addressing it
followed by the results that we observe.

(RQI) How often are build changes accompanied by
source/test code changes?

Approach. We measure the rate of build and source/test co-
change as a percentage of all build changes. Specifically, we



TABLE IV
THE MEDIAN OF THE RECALL, PRECISION, F-MEASURE, AND AUC VALUES OF THE TEN CLASSIFIERS CONSTRUCTED AT RE-SAMPLING BIAS () LEVELS
OF 0, OPTIMAL, AND 1. THE FIRST ROW SHOWS THE RAW VALUES WHILE THE SECOND ROW SHOWS THE IMPROVEMENT OF ADDING
LANGUAGE-SPECIFIC CHARACTERISTICS TO LANGUAGE-AGNOSTIC CLASSIFIERS.

Mozilla Eclipse-core Lucene Jazz
Bias (8) | 0.0 0.40 1.0 0.0 0.59 1.0 0.0 0.73 1.0 0.0 0.32 1.0
Recall 0.57 0.63 0.67 0.30 0.39 0.43 0.14 0.31 0.39 0.24 0.31 0.40
+0.05***  +0.00 -0.02 +0.01 +0.00 +0.01 +0.03 -0.05 +0.00 +0.04 +0.08**  +0.15%**
Precision 0.74 0.63 0.53 0.50 0.39 0.34 0.38 0.31 0.33 0.36 0.31 0.24
+0.06***  +0.10%**  +0.15**= || 40.09*  +0.07**  +0.09** | +0.09 +0.11**  +0.14**> | -0.12 -0.06 -0.13
Fomeasure 0.64 0.63 0.60 0.37 0.39 0.38 0.20 0.31 0.36 0.29 0.31 0.30
+0.05***  +0.06***  +0.10*** || +0.02 +0.02 +0.05* +0.04 +0.05* +0.10%* +0.1 +0.05 +0.0
AUC 0.86 0.88 0.88 0.68 0.69 0.68 0.75 0.78 0.79 0.61 0.60 0.59
+0.03***  +0.04***  +0.05** || +0.02 +0.03* +0.04* +0.09**  +0.07**  +0.10*** | +0.05**  +0.03* +0.04*
Statistical significance of the improvement achieved through language-specific characteristics (One-tailed Mann-Whitney U-test)

* p < 0.05; ** p<0.01; *** p < 0.001

report the percentage of build-changing work items that also
contain source or test code changes.
Results. Most Mozilla build changes co-occur with source
or test code. While Table [l shows that Mozilla build co-
change is the minority category with respect to all source
and test changes (27%), source/test co-change is the majority
category with respect to all build changes. Indeed, 86% of
Mozilla build-changing work items also change source code,
and 29% also change test code. Altogether, 88% of Mozilla
build changes co-occur with source/test code changes.
Co-occurrence alone does not indicate that there is a causal
relationship between build changes and source/test changes.
However, the inflated rates of co-occurrence that we observe
suggest that there is likely information in these co-changes
that we can leverage to better understand the types of source
and test changes that require accompanying build changes.

While build co-changing work items are the minority
category with respect to all source and test changes,
source/test co-changing work items are the vast majority
of all build changes in Mozilla. This suggests that source
and test change characteristics may help to explain when
build changes are necessary.

(RQ2) Can we accurately explain when build co-changes are
necessary using code change characteristics?

Approach. Table shows performance values with § =
0,1, 6, where 6 is the value where recall and precision values
are equal. We refer to 6 as the optimal § value, since we
value precision (are build co-change classifications reliable?)
and recall (are we finding all of the build co-changes?) equally.
Results. Our Mozilla classifiers vastly outperform random
classifiers. The source- or test-build co-change work items
row of Table [[l shows that a random classifier would achieve
0.26 precision at best. Table shows that our Mozilla clas-
sifiers more than double the precision of random classifiers,
achieving a recall and precision of 0.63 (5 = ). Moreover,
since the AUC metric is designed such that a random classifier
would achieve an AUC of 0.5, Table shows that our Mozilla
classifier outperforms a random classifier by 0.38, achieving
an AUC of 0.88.

Language-specific characteristics improve classifier perfor-
mance. Table shows that when language-specific char-
acteristics are added to our classifiers, the overall perfor-
mance improves. Indeed, despite slight decreases in recall,
the precision, F-measure, and AUC values improve. To test
whether the observed improvement is statistically significant,
we performed one-tailed Mann-Whitney U-tests (o = 0.05).
Test results indicate that the improvements in precision, F-
measure, and AUC are statistically significant.

Using language-specific metrics, we can improve Mozilla
classifier performance, achieving an AUC of 0.88.

(RQ3) What are the most influential code change characteris-
tics for explaining build co-changes?

Approach. To study the most influential code change char-
acteristics in our random forest classifiers, we compute
Breiman’s variable importance score [18|] for each studied
characteristic. The larger the score, the greater the importance
of the code change characteristic.

Figure [3] shows the variable importance scores for the

studied code change characteristic in each of the ten folds
using boxplots. Since analysis of variable importance scores
at f =0 and 3 = 1 show similar trends, Figure [3] shows only
the variable importance scores for the classifier trained with
[ = 0 to reduce clutter.
Results. Source and test changes that modify the structure
of a system and prior build co-change are important
explanatory factors of build changes in Mozilla. Figure
shows that activities that alter the structure of a system like
adding/deleting source code and adding/removing non-core
libraries through #include statements are among the most
important variables used by the Mozilla classifiers. Further-
more, prior build co-change is also an important indicator
of future build co-changes. While renaming operations also
modify the structure of a system, their low importance scores
are likely due to the relative infrequency of rename operations
in the Mozilla VCS history.

Our Mozilla classifiers derive much of their explanatory
power from frequently occurring structural changes like
adding source files, as well as historical co-change ten-
dencies.




Mozilla ‘ ‘ Eclipse—core Lucene Jazz
e
Q
|5
» 0.10
(]
(5]
: = i $
3 - é
£ 0054 ¢ é $ E
2 = R
s - - =] e (T ==
S - -+ = & é é -
> - —-—s = ——
0.004 — -— - - i
I 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 I I I 1 1 1 1 1 1 1 1 1 I I 1 1 1 1 1 1 1 1
€ éé \2@%@%{\ %{\ 6«@%@?&\6 RS (\Qe ,\\\e & &e\e\e?e\eé&\e ;\\e, ((\e, (0@(\06(@6 ‘\\\ee &e éée\z&eé\z\e%{\\e&\ ((\e «\z er\ge ,\\\89 &e &e’\z@%@g{\ %{\ 6«@6«@60\6
g {%’\ 6\ ) 9\ AN 0((\%’0 08‘ 2@ < e“’é e e o’c 08‘ & ’\?’ < e"’f‘€> ‘(\ ‘Qﬁ\@&o/&ﬁex \>‘° (‘?J (< %ﬁ‘ % ((\ ) 9‘ 2 o

o TGP <& @’ SRR o oY ’\ &%%\»‘“ o g i Frels e c‘&%%\o“\ o g SRR ce"

¥ o XSRS s e s & o°

QRN o o SEN R

Fig. 3. Variable importance scores for the studied code change characteristics (8 = 6).
Discussion

While our classifiers perform well for Mozilla in general, we
wondered whether the nature of the programming languages
used in a subsystem (i.e., top-level directory) will have an
impact on classifier performance. While Mozilla primarily
consists of C++ code, it also contains subsystems implemented
using several other programming languages (e.g., Javascript
and PHP). To evaluate our conjecture, we construct and
analyze directory-specific Mozilla classifiers.

Approach. In order to study classifier performance on a
subsystem basis, we mark each work item with a listing of
directories that are impacted by source and test changes within
the work item. We then build classifiers for each directory
separately. We ignore directories with fewer than 50 work
items because we want our tenfold cross validation approach
to test on at least five work items (10% of 50 work items).
Results. As could be expected, Mozilla classifier perfor-
mance is the weakest in subsystems primarily implemented
using web technologies. We find that most Mozilla subsys-
tems have classifier performance that exceeds 0.7 AUC. How-
ever, the Mozilla webtools subsystem has subpar classifier
performance when compared to the other subsystems (0.31-
0.45 AUC). We observe similar weak classifier performance
in the test subdirectories of the js subsystem. The code
in these subsystems is written using web technologies, such
as Javascript for testing the Mozilla Javascript engine, and
PHP and Perl CGI for implementing tools like Bugzilla. Web
technologies differ in terms of build tooling from the C++ code
for which our classifiers perform well. While C++ code must
be compiled and linked by the build system, the web code
must only be tested, packaged, and deployed. We constructed
special classifiers that detect the PHP require keyword as a
dependency change, but it did not improve performance. The
changes that induce build changes for web technologies are
less code-related, and are thus more difficult to explain.

V. JavAa CASE STUDY RESULTS

Our findings in Section show that since Mozilla build
changes are frequently accompanied by source and test
changes (RQ1), we can derive information from the source and
test changes to accurately explain when build changes are nec-
essary (RQ2). This confirms common wisdom among C/C++
developers. However, we find that the programming languages
used in a subsystem seem to influence the performance of our
classifiers, i.e., it is harder to explain build changes in the
subsystems that are implemented using web technologies than
those implemented using C++. Furthermore, our prior work
has shown that there are differences in the evolution of Java
and C build systems, likely due to the built-in dependency
management performed by the Java compiler [4].

To further investigate whether those environment changes
have an impact on our co-change classifiers, we replicate our
Mozilla case study on three Java systems. In this section, we
present the results of our Java case study with respect to our
three research questions. Since we use the same approaches
as were discussed in Section we only discuss the results
that we observe with respect to each research question below.

(RQI) How often are build changes accompanied by
source/test code changes?

Similar to Mozilla, Java build systems frequently co-
change with source or test code. Table [[|shows that between
449% (Lucene) and 82% (Eclipse-core) of Java work items that
contain build changes also change source code. Furthermore,
between 36% (Jazz, Eclipse-core) and 41% (Lucene) of work
items that change the build also change test code. Altogether,
between 53% (Lucene) and 81% (Eclipse-core) of Java build
changes co-occur with source or test changes.

While coarse-grained file modifications and dependency
information explain build changes in C++ subsystems
reasonably well, they do not explain build changes in
subsystems with web application code.

Similar to C++ build systems, most Java build changes
are accompanied by source or test changes, suggesting
that Java source and test change characteristics may also
help to explain when Java build changes are necessary.




(RQ2) Can we accurately explain when build co-changes are
necessary using code change characteristics?

Similar to Mozilla, our Java classifiers outperform ran-
dom classifiers. Table shows that Eclipse-core, Lucene,
and Jazz classifiers achieve recall and precision of 0.31-0.39
(B = #0) and AUC values of 0.60-0.78. Our classifiers for
Java systems outperform random classifiers that would only
achieve between 0.04 (Jazz) and 0.16 (Eclipse-core) precision
by a minimum factor of two.

We achieve the lowest performance in our Jazz classifiers.
Unfortunately, the prior build co-changes and number of
files characteristics could not be calculated for Jazz due to
limitations of the provided dataset. We suspect that adding
these metrics would bring the Jazz classifier performance up
to match the performance of the other Java case studies.

Similar to Mozilla, language-specific characteristics im-

prove classifier performance, especially in terms of precision
and AUC. Table [[V| shows that the AUC of our Java classifiers
improves by 0.03-0.07 when language-specific characteristics
are added (8 = #). Mann-Whitney U tests indicate that these
AUC improvements are significant.
On the other hand, our Java classifiers under-perform
with respect to our Mozilla classifier. The difference in
performance is substantial — a reduction of roughly 33% in
most of the performance metrics. We hypothesize that such
a consistent difference in the performance of Mozilla and the
Java classifiers is related to fundamental differences in the C++
and Java compile and link tools. For example, when using a
C++ compiler, developers often rely on external build tools
like make to manage dependencies amongst source files, while
Java compilers automatically resolve these dependencies [21].
Since Java compilers are more intelligent in this regard, build
changes are rarely required to track file-level dependencies.

To evaluate our hypothesis, we selected a representative
sample of work items for manual analysis, since the full
set of work items is too large to study entirely. To obtain
proportion estimates that are within 10% bounds of the actual
proportiorzl with a 95% confidence level, we use a sample size
of s = %ﬁ;p), where p is the proportion that we want to
estimate and z = 1.96. Since we did not know the proportion
in advance, we use p = 0.5. We further correct for the finite
population of build co-changing work items in Eclipse-core

(i.e., 382, see Table [l) using ss = 1% to obtain a sample

size of 77. Table [V]shows the percentag3§2of randomly selected
work items that are associated with each change category.
The majority of Eclipse-core build changes are unrelated
to the structure of the system. Table |V| shows that release
engineering tasks (e.g., expanding platform support) and build
maintenance tasks (e.g., compiler flag settings) account for
43% + 10% and 28% =+ 10% of build change respectively, a
larger portion than structural changes (25% =+ 10%). Indeed,
75%+10% of the studied build-changing work items were un-
related to the structure of the system (i.e., build maintenance,
release engineering, and test maintenance).

For example, we studied a defect (ID 226462) where Eclipse

TABLE V
CATEGORIES OF IDENTIFIED ECLIPSE-CORE BUILD CHANGES WITH A 95%
CONFIDENCE LEVEL AND A CONFIDENCE INTERVAL OF &£ 10%.

Category Task Total # % | # correctly
classified

System structure Refactorings 19 | 25% 8
Build mai N Build tool configuration 15 | 20% 0
Build defects 6 8% 0

Add platform support 12 | 16% 2

Release engineering | Packaging fixes 12 [ 16% 3
Library versioning 8 | 1% 0

Test maintenance Test infrastructure 3 4% 0

was crashing when operating in a specific environment. The
source code was fixed to prevent the crash, however the as-
signed developer discovered that a particular compiler warning
could have notified the team of the issue prior to release.
The work item fix included the build change to enable the
compiler warning to prevent regression. Our classifiers fail
to explain these sorts of build changes that do not directly
link to source code changes, and in general, most source code
changes in the Java systems do not require accompanying
build changes (see Table . Hence, the factors that drive Java
build change are more elusive and difficult to isolate based
on code change characteristics alone, which might provide an
additional difficulty for developers to realize when they need
to make a build system change.

Furthermore, a large proportion of source/build co-change

requires expertise from different team roles. For example, the
source code maintenance tasks require developer expertise,
while release engineering and build maintenance tasks require
release engineering expertise. This finding complements those
of Wolf et al., who find that team communication is a powerful
predictor of build outcome [22]].
Nonetheless, our Java classifiers can explain the build
changes that are relevant to a developer. Indeed, Table
shows that 8 of the 19 work items that alter system structure
were identified by our Eclipse-core classifier. In contrast, our
classifiers only identified 5 of the 32 release engineering work
items and no build or test maintenance work items. Since
our classifiers are based on code change characteristics, they
cannot assist release engineers, build maintainers, or quality
assurance personnel. We plan to expand the scope of our
classifiers to assist these practitioners in future work.

Our Java classifiers outperform random classifiers,
achieving an AUC of 0.60-0.78. Yet, they under-perform
with respect to the Mozilla classifier (0.88 AUC), since
Java build co-changes are mostly related to release engi-
neering activities rather than being purely code-based.

(RQ3) What are the most influential code change characteris-
tics for explaining build co-changes?

Source and test changes that alter system structure are not
good indicators of build changes in studied Java systems.
Figure [3| shows that source code modifications that do not alter
the structure of a system (i.e., Source/Test modified) are more
important indicators of build changes in the Java systems than
those that do. This finding complements Table [V] indicating



that structural changes are not very important indicators of
build change in Java systems. The relative infrequency of
structural co-change for the Java build systems is likely due to
the Java compiler’s built-in support for dependency resolution.
Since structural co-changes are of little value for our
Java classifiers, these classifiers need to derive co-change
indications from other code change characteristics. Fig-
ure [3| shows that adding or removing non-core dependencies
(specified by Java import statements) helps to fill the void
left by the missing structural cues. Although omitted from
Figure 3] due to space constraints, the less detailed versions
of the dependency characteristic (see Table [l) have lower
variable importance scores, suggesting that narrowing the
scope of the dependency characteristic to only detect non-
core API changes improves its performance in our classifiers.
Furthermore, the prior build co-changes characteristic is the
most important indicator of build co-change in our Eclipse-
core and Lucene classifiers. Prior build co-changes also plays
an important role in our Mozilla classifiers, indicating that
historical co-change tendencies are consistent indicators of
future build co-changes.

Since Java build changes rarely coincide with changes to
the structure of a system, Java build changes are more
effectively explained by historical co-change tendencies
and changes to non-core Java API import statements.

V1. THREATS TO VALIDITY

We now discuss threats to the validity of our case studies.
Construct validity. We make an implicit assumption that the
collected data is correct, i.e., in the data used to build our
classifiers, developers always commit related source, test, and
build changes under the same work item when necessary. On
the other hand, our work item data is robust enough to handle
cases where developers did forget to change the build in the
same transaction as a corresponding code change.

Our bias analysis in Section shows that work item
aggregation skews the developer contributions in Mozilla. To
combat this bias, we remove the skewed early development
period from the dataset prior to performing our case studies.
Internal validity. We use code change characteristics to
explain build changes because most of the build changes
coincide with code changes. We selected metrics that cover a
wide range of change characteristics that we felt would induce
build changes. However, other metrics that we have overlooked
may also improve the performance of our classifiers.

Our file classification approach is subject to the authors’
opinion and may not be 100% accurate. The authors used their
best judgement to classify files that could not be automatically
classified using filename conventions. The authors rely on their
prior experience with build systems to classify files that may
have fit several categories [3l 4} [7, 23]. We have also used
this classification approach in our prior work [2] and made
the classified files available onlinef] to aid in future research.

4http://sailhome.cs.queensu.ca/replication/understanding_build_changes/

External validity. Despite the difficulty of collecting linked
work item data, we study four software systems. However,
our sample size may limit the generalizability of our results.
To combat this limitation, we study systems of different sizes
and domains. Moreover, we augment our study of three open
source systems with the proprietary IBM Jazz system.

We suspect that the differences in the C++ and Java build
change classifiers are due to differences in the dependency
support of C++ and Java build tools. However, there are likely
several confounding factors that we could not control for in
such a small sample. For example, we observed variability
in the performance of the three studied Java systems. Thus,
the differences that we observe among C++ and Java systems
may simply be due to natural variability among the systems
rather than indicative of differences between the C++ and
Java build systems. While deeper manual analysis seems to
support the latter case, further replication of our results in
other (particularly C++) systems could prove fruitful.

VII. RELATED WORK

In this section, we discuss the related work with respect to
build system maintenance, tool support for build maintenance,
and change prediction.

Co-evolution of source code and build system. Prior
work shows that build systems generate substantial project
maintenance overhead. Kumfert er al. [6] and Hochstein et
al. [5] find that there is a “hidden overhead” associated
with maintaining build systems. In our prior work, we show
that build systems tend to co-evolve with source code from
release to release [3| 4]. We have also shown that the build
system evolution imposes a non-trivial overhead on software
development [2]], e.g., up to 27% of source code changes re-
quire accompanying build changes. Indeed, Neitsch et al. find
that abstractions can leak between source and build domains,
likely due to the co-dependent nature of source and build
changes [24]. These findings motivate our use of source and
test code change characteristics for training classifiers that
explain when build changes are necessary.

Tool support for build maintenance. Recent research has
proposed several tools to assist developers in maintaining
the build system. Adams et al. develop the MAKAO tool to
visualize and reason about build dependencies [23]. Tamrawi
et al. propose a technique for visualizing and verifying build
dependencies using symbolic dependency graphs [25]. Al-
Kofahi et al. extract the semantics of build specification
changes using MKDiff [26]]. Nadi et al. develop a technique for
reporting anomalies between source and build system layers as
likely defects in Linux [27,28]]. By contrast, our work explores
indicators that may be used to create a tool to help developers
avoid neglecting build changes when they are required.
Change prediction. Researchers have used machine learning
classifiers to explain or predict software engineering phe-
nomena. For example, Hassan and Zhang use classifiers to
predict whether a build would pass a certification process [LLO].
Ibrahim et al. use classifiers to predict whether a developer
should contribute to an email discussion [11]. Shihab et al. use
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classifiers to predict whether a bug will be reopened [14]. Knab
et al. use classifiers to predict the defect density of source code
files [12], while Ratzinger et al. use decision trees and other
learned classifiers to predict when refactoring is required [13]].
We construct classifiers to explain when build changes are
necessary using source and test code change characteristics.

VIII. CONCLUSIONS

Build systems age in tandem with the software systems
that they are tasked with building. Changes in source and test
code often require accompanying changes in the build system.
Developers may not be aware of changes that require build
maintenance, since build systems are large and complex. Since
realistic builds take a long time to run, neglecting such build
changes can cause build breakages that slow development
progress, or worse can cause the build system to produce
incorrect deliverables, impacting end users. Hence, in this
paper, we set out to answer this central question:

Can build changes be fully explained using charac-
teristics of co-changed source and test code files?

Through a case study of four large software systems, we
found that the answer is no:

o While 4%-26% of work items that change source/test
code also change the build system, 53%-88% of build-
changing work items also contain source/test changes,
suggesting that there is a strong co-change relationship
between the build system and source/test code.

¢ Our Mozilla build co-change classifiers achieve an AUC
of 0.88, with these co-changes being most effectively
indicated by structural changes to a system and historical
build co-change tendencies of the modified files.

« However, classifier performance suffers in systems com-
posed of Java and web application code due to a shift in
the usage and design of build technology from requiring
build changes for structural code changes (e.g., adding
a file) to enabling cross-disciplinary activities related to
release engineering and general build maintenance.

Future work. Our findings suggest that most C++ build
changes and at least the code-related Java build changes can
indeed be predicted using characteristics of corresponding
changes to source and test code. To assist release engineers,
build maintainers, and quality assurance personnel in interact-
ing with Java-based build systems, we plan to explore metrics
related to build structure and platform configuration.
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