
Noname manuscript No.
(will be inserted by the editor)

A Large-Scale Empirical Study of the Relationship between
Build Technology and Build Maintenance

Shane McIntosh · Meiyappan Nagappan ·
Bram Adams · Audris Mockus · Ahmed E.
Hassan

Author pre-print copy. The final publication is available at Springer via:
http://dx.doi.org/10.1007/s10664-014-9324-x

Abstract Build systems specify how source code is translated into deliverables. They
require continual maintenance as the system they build evolves. This build mainte-
nance can become so burdensome that projects switch build technologies, potentially
having to rewrite thousands of lines of build code. We aim to understand the preva-
lence of different build technologies and the relationship between build technology
and build maintenance by analyzing version histories in a corpus of 177,039 reposi-
tories spread across four software forges, three software ecosystems, and four large-
scale projects. We study low-level, abstraction-based, and framework-driven build
technologies, as well as tools that automatically manage external dependencies. We
find that modern, framework-driven build technologies need to be maintained more
often and these build changes are more tightly coupled with the source code than
low-level or abstraction-based ones. However, build technology migrations tend to
coincide with a shift of build maintenance work to a build-focused team, deferring
the cost of build maintenance to them.

Keywords Build systems · Software maintenance · Large-scale analysis · Open
source

Shane McIntosh ·Meiyappan Nagappan · Ahmed E. Hassan
Software Analysis and Intelligence Lab (SAIL)
Queen’s University, Canada
E-mail: mcintosh@cs.queensu.ca, mei@cs.queensu.ca, ahmed@cs.queensu.ca

Bram Adams
Lab on Maintenance, Construction, and Intelligence of Software (MCIS)
Polytechnique Montréal, Canada
E-mail: bram.adams@polymtl.ca

Audris Mockus
Department of Electrical Engineering and Computer Science
University of Tennessee, Knoxville, TN, USA
and Avaya Labs Research, NJ, USA
E-mail: audris@avaya.com

http://dx.doi.org/10.1007/s10664-014-9324-x

2 Shane McIntosh et al.

1 Introduction

Build systems transform the source code of a software system into deliverables. They
describe the process by which software can be incrementally rebuilt by orchestrat-
ing compilers, preprocessors, and other tools, allowing developers to focus on mak-
ing source code changes. A stable build system is crucial to the timely delivery of
software, boosting team productivity by: (1) generating versions of the software for
integration and feature testing; (2) automating the complex task of packaging and de-
ploying software with the correct versions of required libraries, documentation, and
data files; and (3) testing code changes for regression by executing automated tests.

An effective build system helps to manage risk in software development by help-
ing developers to detect code compilation and integration problems early in the de-
velopment cycle. Contemporary software development techniques like continuous
integration, i.e., the practice of routinely downloading the latest source code changes
onto dedicated servers to ensure that the code base is free of compilation and test
failures would not be possible without a robust build system. The recent practice of
continuous delivery (Humble and Farley, 2010), where new releases of a software
system must be provided within minutes or hours rather than days or months, as used
by Facebook or Google would not be possible either. Indeed, Neville-Neal speculates
that the build system is one of the most important development tools (Neville-Neal,
2009).

Although modern Integrated Development Environments (IDEs) provide support
for building simple applications, complex software systems still require manually
maintained build systems (Neitsch et al, 2012; Smith, 2011). There are dozens of
build technologies available for developers to select from,1 each with its own nuances.
These technologies adopt various design paradigms. The four most common ones are
(Smith, 2011):

1. Low-level technologies that require explicitly defined build dependencies between
each input and output file [e.g., make (Feldman, 1979)].

2. Abstraction-based technologies that use high-level project information, such as
the project name and the list of files to build, to generate low-level specifications
(e.g., CMake2).

3. Framework-driven technologies that eliminate the “boilerplate” dependency ex-
pressions that are typical of low-level technologies in favour of conventions by
expecting that input and output files appear in predefined locations (e.g., Maven3).

4. Dependency management technologies that are used to automatically manage ex-
ternal API dependencies (e.g., Ivy4).

Prior research on build systems has shown that: (1) they require non-trivial main-
tenance effort (McIntosh et al, 2011) in order to stay in sync with the source code
that it builds (Adams et al, 2008; McIntosh et al, 2012), and (2) when the mainte-
nance effort associated with the build system grows unwieldy, development teams

1http://en.wikipedia.org/wiki/List_of_build_automation_software
2http://www.cmake.org/
3http://maven.apache.org/
4http://ant.apache.org/ivy/

http://en.wikipedia.org/wiki/List_of_build_automation_software
http://www.cmake.org/
http://maven.apache.org/
http://ant.apache.org/ivy/

. . . Study of the Relationship Between Build Technology and Build Maintenance 3

opt to migrate to a different (perceived to be superior) build technology (Suvorov
et al, 2012). Furthermore, anecdotal evidence5,6 indicates that developers who need
to make modifications to the build system are rarely fluent with them, making it hard
for them to keep up with the demanding requirements of the build system.

Thus far, build system studies have focused on a small sample of between one and
ten projects. In such a small sample, confounding factors like build technology choice
can only be modestly controlled, with most of the studies being performed on make,
Ant, and Maven build systems. Hence, it is not clear what role technology selection
plays in build maintenance, i.e., the amount of activity required to keep the build
system in sync with the source code. We, therefore, set out to empirically study how
widely each build technology is adopted and its relationship to build maintenance.
In order to ensure that our conclusions are valid and repeatably observed, we mine
version history in a corpus of 177,039 open source code repositories. We record our
observations with respect to three dimensions:

Build Technology Adoption: We find that while traditional build technologies like
make are frequently adopted, a growing number of projects use newer technolo-
gies like CMake. Furthermore, programming language choice influences build
technology choice – language-specific build technologies that are more attuned
to the compile-time and packaging needs of a programming language are more
frequently adopted than language-agnostic ones that are not.

Build Maintenance: Surprisingly, the modern, framework-driven and dependency man-
agement technologies tend to induce more churn and be more tightly coupled to
source code than low-level and abstraction-based specifications. Indeed, for sys-
tems implemented using Java and Ruby, a large portion of build specification
churn is spent on external dependency management.

Build Technology Migration: Most technology migrations successfully reduce the im-
pact of build maintenance on developers. Migrations are often accompanied with
a shift to a specialized build maintenance team, reducing the build “tax” that other
developers must pay.

1.1 Paper Organization

The remainder of the paper is structured as follows. Section 2 introduces the stud-
ied build technology paradigms. Section 3 motivates our research questions, while
Section 4 describes our approach to mine version histories to address them. The re-
sults of our case studies on software forges, ecosystems, and large-scale projects are
presented with respect to the studied dimensions in Sections 5, 6, and 7. Threats to
the validity of our study are disclosed in Section 8. Section 9 surveys related work.
Finally, Section 10 draws conclusions.

5http://lists.kde.org/?l=kde-core-devel&m=95953244511288&w=4
6http://argouml.tigris.org/ds/viewMessage.do?dsForumId=450&dsMessageId=

2618367

http://lists.kde.org/?l=kde-core-devel&m=95953244511288&w=4
http://argouml.tigris.org/ds/viewMessage.do?dsForumId=450&dsMessageId=2618367
http://argouml.tigris.org/ds/viewMessage.do?dsForumId=450&dsMessageId=2618367

4 Shane McIntosh et al.

2 Build Technology Paradigms

We use the term build system to refer to specifications that outline how a software
system is assembled from its sources. The build process, i.e., the act of assembling
a software system, is typically split into four steps. First, a set of user-selected or
environment-dictated build tools and features are selected during the configuration
step. Next, the compiler and other commands that produce deliverables are executed
in an order such that dependencies among them are not violated by the construction
step. The certification step follows, automatically executing tests to ensure that the
produced deliverables have not regressed. Finally, the packaging step bundles certi-
fied deliverables together with required libraries, documentation, and data files.

Build systems are supported by a variety of technologies that subscribe to dif-
ferent design paradigms. In this paper, we study the four most common paradigms
(Smith, 2011). We briefly introduce each of the studied paradigms below. Detailed
information about the studied technologies can be found in Appendix A.

2.1 Low-Level

Low-level technologies explicitly define build dependencies between input and out-
put files, as well as the commands that implement the input-output transformation.
For example, one of the earliest build technologies on record is Feldman’s make tool
(Feldman, 1979) that automatically synchronizes program sources with deliverables.
Make specifications outline target-dependency-recipe tuples. Targets specify files cre-
ated by a recipe, i.e., a shell script that is executed when the target either: (1) does not
exist, or (2) is older than one or more of its dependencies, i.e., a list of other files and
targets. Targets may also be phony, representing abstract phases of a build process
rather than concrete files in a filesystem. Ant borrows the tuple concept from make,
however all Ant targets are abstract. When an Ant target is triggered, a list of specified
tasks are invoked that each execute Java code rather than shell script recipes to syn-
chronize sources with deliverables. Similarly, Rake, Jam, and SCons also follow the
make tuple paradigm, but allow build maintainers to write specifications in portable
scripting languages: Ruby, Perl, and Python respectively. We study the make, Ant,
Rake, Jam, and SCons low-level technologies.

2.2 Abstraction-Based

Platform-specific nuances forced maintainers of portable applications, but using low-
level build technologies, to repeat several “boilerplate” low-level build expressions
for handling variability in platform implementation over and over again (e.g., differ-
ent compilers, library support, etc). Abstraction-based tools attempt to address this
flaw by automatically generating low-level specifications based on higher level ab-
stractions. For example, GNU Autotools specifications describe external dependen-
cies, configurable compile-time features, and platform requirements. These specifi-
cations can be parsed to generate make specifications that satisfy the described con-
straints. Similarly, CMake abstractions can be used to generate make specifications,

. . . Study of the Relationship Between Build Technology and Build Maintenance 5

as well as Microsoft Visual Studio and Apple Xcode project files. We study the Au-
totools and CMake abstraction-based technologies.

2.3 Framework-Driven

Framework-driven technologies favour build convention over configuration. For ex-
ample, the Maven technology assumes that source and test files are placed in default
locations and that projects adhere to a typical Java dependency policy, unless other-
wise specified. If projects abide by the conventions, Maven can infer build behaviour
automatically, without any explicit specification. We study the Maven framework-
driven technology.

2.4 Dependency Management

Dependency management tools augment the three types of build systems above by au-
tomatically managing external API dependencies. Developers specify the names and
exact or minimum version numbers of API dependencies. The dependency manage-
ment tool ensures that a local cache contains the APIs necessary to build the project,
downloading missing ones from an upstream repository server when necessary. De-
pendency management tools offer two advantages: (1) users no longer need to care-
fully install the required versions of libraries manually, and (2) production and devel-
opment environments can coexist, since the potentially unstable versions of libraries
that are required for development are placed in a local cache that is quarantined from
the running system. We study the Ivy and Bundler dependency management tech-
nologies.

3 Research Questions

The goal of our study is to better understand: (1) build technology adoption rates,
(2) whether build maintenance is influenced by technology choice, and (3) whether
technology migration can help to reduce the burden of build maintenance. To do
so, we address five research questions using rigourous statistical analysis of 177,039
repositories. We define and motivate our research questions as they relate to the three
dimensions of our study below:

3.1 Build Technology Adoption

Adoption trends can provide insight into the build technologies that development
communities are using in practice. Much research focuses on the make, Ant, and
Maven build systems. However, little is known about how broadly these technolo-
gies are adopted in practice, nor which other technologies require attention from re-
searchers and service providers. In order to address this gap, we formulate the fol-
lowing two research questions:

6 Shane McIntosh et al.

(RQ1) Which build technologies are broadly adopted?
It is unknown how widespread each technology is. Understanding the market
share associated with each technology would help: (1) projects decide which
technology to use, (2) researchers to select which technologies to study, and
(3) individuals and companies who provide products and services that depend
on or are related to build technologies to tailor their solutions to fit the needs
of target users.

(RQ2) Is choice of build technology impacted by project characteristics?
The flexibility of build technologies enables use cases beyond those for which
they were designed. For example, the make technology was not intended for
use in large systems (Feldman, 1979), nor for use in the recursive paradigm
that is frequently adopted (Miller, 1998). Hence, it is unclear whether project
characteristics like system size or programming language influence build tech-
nology adoption. Understanding whether these factors are related to build
technology use may help in the design of better build tools and help build
service providers select more effective solutions.

3.2 Build Maintenance

Although the more modern build technologies offer powerful abstraction techniques,
it is not clear whether they actually ease the burden of build maintenance. The advan-
tages of a more rapid build cycle enabled by a more powerful build technology may
be outweighed by the complexity of build maintenance associated with it. Therefore,
we set out to examine the following two research questions:

(RQ3) Is build technology choice associated with build change activity?
Build systems require maintenance to remain functional and efficient as source
files, features, and supported platforms are added and removed. Reducing the
amount of build maintenance is of concern for practitioners who often refer to
build maintenance as a “tax” on software development (Hochstein and Jiao,
2011). We are interested in studying whether build technology choice can
have an influence on the build “tax”.

(RQ4) Is build technology choice associated with the overhead on source code de-
velopment?
Developers rely on the build system to test their incremental source code
changes. Our prior work shows that source code changes frequently require
accompanying build changes (McIntosh et al, 2011). We are interested in
studying whether the development overhead of build maintenance is influ-
enced by technology choice.

3.3 Build Technology Migration

Any build system requires maintenance, which can quickly become unwieldy (Neun-
dorf, 2010). Software teams take on build migration projects to counteract this, where

. . . Study of the Relationship Between Build Technology and Build Maintenance 7

So#ware	 Forges	

So#ware	 Ecosystems	

Large-‐Scale	 Projects	

Corpus	 of	 So#ware	
Repositories	

Mine	 Commit	
History	

Determine	
File	 Type	

Filter	 Immature	
Projects	 	

Analyze	
Metrics	 Results	

Extract	
Metrics	

Retrieve	 Raw	 Data	 Clean	 and	 Process	
Raw	 Data	

Construct	 Meaningful	
Measures	

Analyze	 and	 Present	
Results	

(4.1)	 (4.2)	 (4.3)	 (4.4)	

843,976	 #	 Repositories	 =	 170,497	

Fig. 1 Overview of our approach.

build specifications are reimplemented, often using different (perceived to be supe-
rior) build technologies [e.g., MySQL (Grimmer, 2010) and KDE (Neundorf, 2010)].
These build migration projects require a large investment of team resources, both in
terms of time and effort. Even then, Suvorov et al. find that migration projects can
fail due to a lack of build system requirements (Suvorov et al, 2012). Indeed, build
maintainers often select build technologies based on “gut feel”. For example, the first
KDE build migration attempt failed partly because the build technology was hastily
selected by taking a vote at a developer conference (Suvorov et al, 2012). To assess
the impact of build technology migration on build maintenance, we formulate the
following research question:

(RQ5) Does build technology migration reduce the amount of build maintenance?
Migration from one technology to another is often perceived as a reasonable
solution, however there is little quantitative evidence to indicate whether these
migrations are “worth it”, i.e., whether they really increase or reduce build
maintenance activity.

4 Approach

Figure 1 presents an overview of the approach that we took to address our research
questions. This design is based on the four steps suggested by Mockus for analyzing
software repositories (Mockus, 2007). We describe each of the four steps below.

4.1 Retrieve Raw Data

It is important that we study a large sample of software projects in order to improve
confidence in the conclusions that we draw. However, investigating a large number
of software projects leads to much diversity in terms of development processes and

8 Shane McIntosh et al.

practices. In order to control for this, it is important to stratify the sample accord-
ingly. Stratification of the sample has two benefits: (1) research questions can be ad-
dressed for each relevant subsample, and (2) the reliability of the findings improves
if the same or similar behaviour is observed among subsamples. Hence, we extract,
stratify, and mine a large corpus of open source version history collected by Mockus
(Mockus, 2009). We describe the corpus of repositories used in this study and explain
our extraction, stratification, and mining approaches below.

4.1.1 Corpus of Software Repositories

Table 1 provides an overview of the corpus of studied repositories of varying size
and purpose. The data in the corpus has been meticulously collected from numerous
public Version Control Systems (VCSs) over the past 10 years (Mockus, 2009). The
corpus contains over 1.3 terabytes of textual data describing source code, build sys-
tem, and other development artifact changes that occurred in the VCS commit logs
of various open source software projects. We first stratify the sample by:

Software forge: A service provider that hosts repositories for development teams.
Since forge repositories are contributed by a plethora of unrelated development
teams, they are rarely reliant on one another. We analyze repositories from the
Github, repo.or.cz, RubyForge, and Gitorious forges.

Software ecosystem: A collection of software that is developed using the same pro-
cess, often by a large team. Repositories are loosely reliant on one another. We
analyze repositories from the Apache, Debian, and GNU ecosystems.

Large-scale project: A software project that records changes to each subsystem using
separate repositories. Repositories are heavily reliant on one another. We analyze
the Android, GNOME, KDE, and PostgreSQL large-scale projects.

The majority of the repositories that we study are from the Github forge. The
reason for this is twofold. First, Github is a very popular software forge, perhaps
the largest of its kind, with millions of developers relying on it daily. This inflates
the number of repositories that originate there. Second, to ensure that our authorship
analyses are valid, we require that the original author of each code change is carefully
recorded, which the underlying Git VCS allows developers to do. In addition, sets of
file changes that authors submit together need to be recorded atomically with a single
revision identifier (i.e., atomic commits). To that end, we narrow our scope of study
to repositories using a VCS that records these details, which artificially reduces the
size of some ecosystems that support several VCS tools (e.g., Debian).

4.1.2 Mine Commit History

Our corpus contains 843,976 distinct repositories. Each repository contains a set of
atomic commits describing the change history of various source code, build system,
and other development artifacts. Each atomic commit includes a unique identifier, the
author name, a listing of file changes, and the time when the changes were submitted.

. . . Study of the Relationship Between Build Technology and Build Maintenance 9

Table 1 Overview of the studied repositories. The most frequently used build technologies and program-
ming languages in the filtered set of repositories are shown in boldface. Percentages will not add up to
100%, since multiple technologies can be used by a single repository.

Forges Ecosystems Projects

G
ith

ub

G
ito

ri
ou

s

re
po

.o
r.c

z

R
ub

yF
or

ge

A
pa

ch
e

D
eb

ia
n

G
N

U

A
nd

ro
id

G
N

O
M

E

K
D

E

Po
st

gr
eS

Q
L

Repositories 832,379 2,693 1,823 539 179 3,799 412 239 991 858 64
After filtering 169,033 645 602 217 179 3,799 412 239 991 858 64

B
ui

ld
Te

ch
no

lo
gy

L
ow

-L
ev

el

Ant 27,014 61 51 4 112 116 7 18 5 27 22
16% 9% 8% 2% 63% 3% 2% 8% 1% 3% 34%

Jam 851 14 15 0 0 22 2 3 0 2 0
1% 2% 2% 0% 0% 1% <1% 1% 0% 1% 0%

Make 62,107 381 395 24 41 1,890 225 227 348 182 42
37% 59% 66% 11% 23% 50% 55% 95% 35% 21% 66%

Rake 75,718 129 43 210 10 21 3 0 0 12 1
45% 20% 7% 97% 6% 1% 1% 0% 0% 1% 2%

SCons 3,012 23 26 0 1 52 5 4 4 56 0
2% 4% 4% 0% 1% 1% 1% 2% <1% 1% 0%

A
bs

tr Autotools 34,318 292 347 6 35 2,210 263 65 854 388 37
20% 45% 58% 3% 20% 58% 64% 27% 86% 45% 58%

CMake 7,920 74 66 0 2 138 18 2 3 705 4
5% 11% 11% 0% 1% 4% 4% 1% <1% 82% 6%

FW Maven 17,958 9 19 3 135 81 2 10 0 0 0
11% 1% 3% 1% 75% 2% <1% 4% 0% 0% 0%

D
ep

Ivy 2,341 0 1 0 19 8 0 0 0 0 0
1% 0% <1% 0% 11% <1% 0% 0% 0% 0% 0%

Bundler 37,394 0 0 2 0 0 0 0 0 1 1
22% 0% 0% 1% 0% 0% 0% 0% 0% <1% 2%

Pr
og

ra
m

m
in

g
L

an
gu

ag
e

Ruby 70,680 126 44 217 6 66 11 2 10 39 1
42% 20% 7% 100% 3% 2% 3% 1% 1% 5% 2%

Javascript 33,307 25 16 9 17 173 10 7 28 48 3
20% 4% 3% 4% 9% 5% 2% 3% 3% 6% 5%

Java 25,436 80 45 3 134 169 8 84 14 10 7
15% 12% 7% 1% 75% 4% 2% 35% 1% 1% 11%

Python 19,280 60 62 0 6 428 46 17 141 66 10
11% 9% 10% 0% 3% 11% 11% 7% 14% 8% 16%

C++ 17,582 349 380 10 13 525 198 54 87 603 31
10% 54% 63% 5% 7% 14% 48% 23% 9% 70% 48%

C 16,918 225 280 17 12 1,363 178 93 523 44 31
10% 35% 47% 8% 7% 36% 43% 39% 53% 5% 48%

Objective-C 15,905 0 1 0 15 877 1 56 488 4 0
9% 0% <1% 0% 8% 23% <1% 23% 49% <1% 0%

PHP 7,198 28 23 0 4 110 19 4 18 30 3
4% 4% 4% 0% 2% 3% 5% 2% 2% 3% 5%

Shell 3,253 17 24 3 16 863 86 39 232 101 14
2% 3% 4% 1% 9% 23% 21% 16% 23% 12% 22%

Perl 857 3 5 0 5 420 13 11 95 7 10
1% <1% 1% 0% 3% 11% 3% 5% 10% 1% 16%

4.2 Clean and Process Raw Data

We process the raw commit data to identify the source and build files in each reposi-
tory. Once we have preprocessed the data, we need to filter out immature or inactive
software projects because they may not require a build system.

4.2.1 Determine File Type

We mark each commit as changing either source, build, both, or neither. In our
prior work, we categorized source and build files semi-automatically (McIntosh et al,
2011), however with a corpus of this scale, manual categorization is infeasible. To
address this, we conservatively categorize source and build files based on filename
conventions with an extended version of the Github Linguist tool.7 We have made
our extended version available online.8 An overview of the filename conventions that
we map to each technology is given in Table 2.

7https://github.com/github/linguist/
8http://sailhome.cs.queensu.ca/replication/shane/EMSE2013/

https://github.com/github/linguist/
http://sailhome.cs.queensu.ca/replication/shane/EMSE2013/

10 Shane McIntosh et al.

Table 2 The adopted file name conventions for each build technology.

Category Technology Conventions

Low-Level

Ant build.xml, build.properties
Jam [Jj]amfile, *.jam

Make (GNU)?[Mm]akefile, *.mk, *.mak, *.make
Rake [Rr]akefile, *.rake,

SCons SConstruct, SConscript, *.scons

Abstraction-Based Autotools [Cc]onfigure.(ac|in), ac(local|site).m4,
[Mm]akefile.(am|in), config.h.in

CMake CMakeLists.txt, *.cmake

Framework-Driven Maven pom.xml, maven([123])?.xml

Dependency Management Ivy ivy.xml

Bundler [Gg]emfile, [Gg]emfile.lock

4.2.2 Filter Immature Projects

Software forges often contain projects that have not yet reached maturity. We apply
three filters to remove repositories that: (1) do not represent software projects, or (2)
are too small to require a build system and are hence not of interest in this study.

F1. Select a threshold for project size (measured in number of source files). Fig-
ure 2a plots threshold values against the number of surviving repositories and
the percentage of those with detected build systems. We select a threshold of
15 source files because it increases the percentage of repositories with detected
build systems to 57% while only reducing corpus size to 506,413 repositories.

F2. Select a threshold for development activity (measured in number of commits).
Figure 2b shows that selecting a 20 commit cutoff reduces the corpus size to
306,798 repositories, while increasing the number of repositories with build sys-
tems to 193,283 (63%).

F3. Remove repositories where our classification tool marks more than 20% of the
project files as unknown, since our results would ignore too much project activity.
After applying this filter, 261,367 repositories survive.

Table 1 shows that of the 261,367 forge repositories that survive our filtering
process, a corpus of 169,033 Github, 645 Gitorious, 602 repo.or.cz, and 217 Ruby-
Forge repositories contain detectable build systems, i.e., a total of 170,497 reposito-
ries (65%). Surprisingly, 35% of the surviving forge repositories did not have a de-
tectable build system. The majority of these repositories contained web applications,
e.g., PHP or JSP code. Savage suggests that the lack of build system uptake from
web developers is worrisome (Savage, 2010). For example, build systems for web
applications are necessary to drive continuous delivery (Humble and Farley, 2010),
i.e., automation of the source code deployment process, such that automatically tested
code changes can be quickly deployed for end user consumption. Without a build sys-
tem to automate the testing and deployment of web applications, projects often rely
on error-prone, manual deployment processes. Since we focus on build maintenance
in this paper, we filter away projects without detected build systems.

. . . Study of the Relationship Between Build Technology and Build Maintenance 11

0 20 40 60 80 100

50
55

60
65

Threshold (# source files)

P
er

ce
nt

ag
e

of
 p

ro
je

ct
s

w
ith

 a
 b

ui
ld

 s
ys

te
m

4e
+

05
6e

+
05

Left axis − Percentage of projects with a build system
Right axis − Projects remaining in the corpus

(a) Project size.

0 20 40 60 80 100

60
65

70
75

Threshold (# commits)

P
er

ce
nt

ag
e

of
 p

ro
je

ct
s

w
ith

 a
 b

ui
ld

 s
ys

te
m

2e
+

05
4e

+
05

Left axis − Percentage of projects with a build system
Right axis − Projects remaining in the corpus

(b) Development activity.

Fig. 2 Threshold plots for filtering the corpus of repositories.

Overall, we filtered the dataset to study software projects that are more likely to
benefit from build technology. Our selection criteria eliminated 80% of the projects,
i.e., those that are very small (less than 15 files) and those with little development
activity (less than 20 commits). We also report results for the four large-scale software
projects and three ecosystems to check if our findings are consistent in smaller, more
carefully controlled development environments.

12 Shane McIntosh et al.

4.3 Construct Meaningful Measures

For each of our research questions, we extract a set of measures from the repositories
that survive the filtering process. We present the set of measures that we extracted for
each research question in more detail in Sections 5, 6, and 7.

4.4 Analyze and Present Results

After extracting metric values, we analyzed them using various visual aids such as
line graphs, boxplots, and beanplots (Kampstra, 2008). These figures are also dis-
cussed in more detail in Sections 5, 6, and 7.

5 Build Technology Adoption

In this section, we study build technology adoption by addressing our first two re-
search questions.

(RQ1) Which build technologies are broadly adopted?

We iterate over the changes in each repository, indicating that a repository uses a
build technology if any of its files have names that match patterns for that technology
(since a repository may use multiple build technologies, the percentages do not sum
up to 100%). We show build technology adoption rates in Table 1 and Figure 3. We
discuss our results with respect to the studied forges, ecosystems, and large-scale
projects below.

(RQ1-1) Diversity in technology adoption

Software forge repositories are rarely coupled to each other. Hence, we expect diver-
sity in software forge build technology adoption. Table 1 shows that although there
are technologies with broad adoption, there is also much diversity, with many differ-
ent build technologies appearing in Github, Gitorious, and repo.or.cz forges. Ruby-
forge is composed of Ruby projects, and hence the Ruby-specific Rake technology is
popular.

Software ecosystem repositories are loosely coupled, often being free to evolve
independently of each other. However, ecosystems often enforce guidelines on project
structure. Hence, we expect less diversity in build technology adoption within ecosys-
tems when compared to software forges. Table 1 shows that ecosystems tend to con-
verge on a small collection of build technologies. We expect that GNU and Apache
ecosystems would use the tools that are developed within the ecosystem, i.e., GNU
projects would use GNU Autotools or make, while Apache projects would use Apache
Ant, Maven, and Ivy tools. The use of exterior tools like CMake and Rake in these
ecosystems suggests that while technology convergence is often the case, developers
have the freedom to experiment with other build technologies.

. . . Study of the Relationship Between Build Technology and Build Maintenance 13

●
●

●

● ●
●

●
●

●
●

●

●
●

●
●

● ●

20000

40000
60000
80000

2004 2006 2008 2010 2012
Adoption date

N
um

be
r

of
 r

ep
os

ito
rie

s Build Technology

● Ant

Autotools

Bundler

CMake

Makefile

Maven

Rake

(a) Number of repositories (Y-axis begins at 100 projects).

●
●

●
● ● ●

●
●

●
●

●
● ● ● ● ● ●

0%

20%

40%

60%

2004 2006 2008 2010 2012
Adoption date

P
er

ce
nt

ag
e

of
 r

ep
os

ito
rie

s Build Technology

● Ant

Autotools

Bundler

CMake

Makefile

Maven

Rake

(b) Percentage of repositories.

Fig. 3 Build technology adoption over time.

Large-scale project repositories are tightly coupled. Repositories encapsulate sub-
systems that are merged into a larger system using the build system. Hence, we expect
to find little diversity in large-scale project technology adoption. Table 1 confirms our
suspicion, with the Android, GNOME, and KDE projects adopting a single technol-
ogy in more than 82% of project repositories.

PostgreSQL results in Table 1 show that the central technology can be used in
tandem with other technologies. Autotools, make, and even Ant appear in 66%, 58%,

14 Shane McIntosh et al.

and 34% of the repositories respectively. Manual inspection of the PostgreSQL build
system reveals that build configuration is implemented with GNU Autotools, while
the construction step is implemented using make. Ant specifications are used to build
a PostgreSQL Java Database Connectivity (JDBC) plugin, while the PGXN Utils
repository, which provides an extension framework for PostgreSQL plugins is im-
plemented using Ruby and uses the Rake and Bundler technologies to produce Ruby
packages.
Observation 1 – Language-specific technologies are growing in popularity: Soft-
ware forges show the highest degree of build technology diversity and hence offer
an interesting benchmark for build technology popularity. Table 1 shows that make is
still popular, appearing in many forge repositories. Language-specific tools like Ant
and Maven (Java) are also popular. Even Rake and Bundler (Ruby) are popular out-
side of the Ruby-specific Rubyforge.

Figure 3a shows build technology adoption trends between 2004 and 2012 on a
logarithmic scale. Prior to 2007, make and Autotools were the most popular tech-
nologies with consistent growth. However, Figure 3b shows that make and Autotools
began to lose market share in 2005, due to an explosion of Rake-driven Ruby projects.
In 2010, CMake began to gather momentum, and Bundler was initially embraced by
the Ruby community. Ant and Maven show steady growth, with Ant having slightly
more adoption.

Summary: While many projects use traditional technologies like make and Auto-
tools, language-specific technologies like Rake and Bundler capture more market
share (Observation 1).
Implications: Although researchers and service providers should continue to fo-
cus on older build technologies like make that still account for a large portion
of the market share, more modern build technologies are gaining popularity and
should also be considered.

(RQ2) Is choice of build technology impacted by project characteristics?

To address this question, we focus on two major factors: (1) the size of the source
code in the repository, and (2) the adopted programming languages. We hypothesize
that these factors may impose limitations on build technology choice. For example,
larger systems may require more powerful and expressive build technologies. Sim-
ilarly, the use of a programming language may require technology-specific support
to handle language-specific nuances. We use the forge and ecosystem data to address
this research question because the repositories within them are rarely dependent on
each other.

(RQ2-1) Source Code Size

We use the number of source files within a repository as a measure of source code
size. Although source code file count is a coarse-grained metric, prior work suggests

. . . Study of the Relationship Between Build Technology and Build Maintenance 15

Low−level Abstraction Frame Dependency

100

10000

Ant Makefile Rake SCons Jam Autotools CMake Maven Ivy Bundler

S
ys

te
m

 s
iz

e

Fig. 4 Size of the source code (# files) per repository in the forges and ecosystems.

that finer-grained metrics, such as SLOC, show similar evolutionary patterns in large
datasets (Herraiz et al, 2006).

We use boxplots to provide an overview of the data with respect to the stud-
ied build technologies. Finally, we use Tukey Honestly Significant Difference (HSD)
tests (Miller, 1981) to rank technology-specific samples to confirm that the differ-
ences that we observe in the boxplots are statistically significant (α = 0.01). Since
the Tukey HSD test assumes equal within-group variance across the groups, we trans-
form source code size using ln(x+ 1) in order to make the distribution of variances
more comparable among the groups.
Observation 2 – Large repositories tend to adopt newer technologies earlier than
smaller ones: Figure 4 shows that the repositories using the Jam, SCons, and CMake
technologies, i.e., the three technologies with the least adoption in our corpus (see
Table 1), tend to have more source code files than the repositories using other build
technologies. Tukey HSD test results indeed rank Jam as the largest sample, followed
by SCons, and then CMake. On the other hand, the more mature technologies see
adoption that spans a broader range of sizes, including several small repositories.
Tukey HSD test results rank Maven, Make, and Ant near the bottom due to the mass
of small repositories that adopt them. Although Rake and Bundler are newer build
technologies, they occupy the bottommost rank according to the Tukey HSD test. We
conjecture that this is due to the terse nature of the Ruby language that applications
built using Rake and Bundler are implemented in.

(RQ2-2) Programming Language

We study the build technologies adopted by each language-specific group of reposi-
tories. As done in RQ1, we indicate that a repository uses a build technology if any
of its files have names that match patterns for that technology. Since a programming

16 Shane McIntosh et al.

Autotools

C

C++ Objective-C

CMakeMakefile

Ant

JavaMaven

Bundler

Ruby

RakeSCons

Ivy
3.74 3.66

3.48

4.47

4.48 4.45

3.48

3.67

3.62

3.93

3.58

3.84
4.48

4.81

3.42

4.55
3.64

Fig. 5 Statistically significant (p < 10−100) co-occurrences of build technology (black boxes) and pro-
gramming language (white ovals) on a fitted Poisson model. The higher the log odds ratio presented above
each edge, the higher the likelihood of a non-coincidental relationship.

language likely only becomes a build maintenance concern if a considerable propor-
tion of the system is implemented in it, we do not consider programming language
used unless at least 10% of its source files are implemented using that language.9

A common approach to model count data in contingency tables is via Poisson re-
gression. We use it to describe co-occurrences of build technology and programming
language: #Projects ˜ forge+ language+ technology+ language:technology. A cat-
egorical predictor of the forge/ecosystem is included to control for the role that the
repository host may play in the adoption of language or technology.

Figure 5 shows highly statistically significant connections (p < 10−100) between
build technologies and programming languages according to that model. The odds
ratios are also presented, i.e., the ratio of the observed frequency to the likelihood of
the co-occurrences of technology and programming language if they were indepen-
dent events. We apply the logarithm to the odds ratio, since the values can be quite
large.

9Threshold values of 5% and 15% yielded similar results.

. . . Study of the Relationship Between Build Technology and Build Maintenance 17

Observation 3 – Programming language choice is related to build technology choice:
If there was truly no relationship between language and build technology choice, we
would expect that the technology usage in each group would be similar. However,
the formation of clustered groups of technologies around programming languages in
Figure 5 shows that each language has prevailing build technologies. For example,
Ant, Maven, and Ivy are quite popular for Java projects, while Rake and Bundler
are almost unanimous choices for Ruby projects. C, C++, and Objective-C projects
favour make, Autotools, and CMake.

Furthermore, the data suggests that language-specific technologies are growing
in popularity. Figure 3 shows that language-specific technologies like Rake, Bundler,
Ant, and Maven have grown rapidly in the past few years, while Figure 5 confirms
that Rake and Bundler are de facto build technologies for Ruby repositories, and Ant
and Maven share the bulk of Java repositories.

Summary: Large projects tend to adopt newer technologies earlier than small
projects do (Observation 2). Furthermore, there is a strong relationship between
the programming languages used to implement a system and the build technol-
ogy used to assemble it, which may limit the scope of technologies considered by
software projects (Observation 3).
Implications: Build technologies that are tailored for specific programming lan-
guages have grown quite popular as of late, suggesting that tool developers and
service providers should follow suit.

5.1 Discussion

The studied technology adoption trends (RQ1) indicate that the use of traditional
build technologies like make and Autotools are still prevalent in the software forges,
ecosystems, and large-scale systems. However, language-specific technologies are
growing in popularity (Observation 1). We also observe that there is a strong rela-
tionship between programming language and technology choice (Observation 3).
The trade-off between language-agnostic and language-specific build technologies:
Language-specific tools are almost unanimous choices for Java and Ruby systems.
Figure 5 indicates that Java projects often select build technologies like Ant, Maven,
and Ivy, while Ruby systems select Rake and Bundler most frequently. These language-
specific build technologies offer several advanced features that are tailored for build-
ing projects of the respective languages. For example, language-agnostic tools like
make check that each target is up-to-date with its dependencies in order to detect
whether the recipe should be executed. However, the Java compiler will perform these
same checks, potentially recompiling out of sync dependencies automatically. Being
aware of this feature of the Java compiler, Ant and Maven technologies defer .class
dependency checks to the Java compiler. This feature of Ant and Maven likely make
them more appealing to Java developers than language-agnostic alternatives.

When selecting a technology to adopt, software teams evaluate a trade-off be-
tween the flexibility of language-agnostic tools like make and feature-rich language-
specific technologies like Maven. While it appears that repositories using modern

18 Shane McIntosh et al.

Table 3 Build maintenance activity metrics.

Metric Description Rationale

Build commit
proportion

The proportion of commits that con-
tain a change to a build specification.

Frequently changing build systems are
likely more difficult to maintain.

Build commit
size

The median number of build lines
changed by a build commit in a given
period.

Technologies that frequently require
large changes are likely more difficult
to maintain.

Build churn vol-
ume

The total number of build lines
changed in a given period.

Frequently churning build systems are
likely more difficult to maintain.

languages like Java and Ruby favour the latter, C, C++, and Objective-C teams are
still frequently adopting make. Indeed, despite lacking the powerful language-specific
features that tools like SCons, CMake, and Autotools provide, make is still quite
popular among C, C++, and Objective-C systems. Figure 3a shows that make con-
tinues to grow, albeit more slowly than more modern technologies. For example,
during the planning of a build technology migration, the Apache OpenOffice (AOO)
team recently evaluated two primary options: make and CMake.10 While debate is
still ongoing, the AOO team highlights several advantages that make maintains over
CMake. For example, make supports pattern-based dependency expressions, while
CMake does not. Moreover, CMake specifications generate build systems on UNIX
platforms that follow the notably flawed recursive make paradigm (Miller, 1998) that
the AOO aims to avoid.

The sustained popularity of make among C, C++, and Objective-C repositories
may also be due to the fact that the compilation and linking model are congruent
with the make dependency model. C, C++, and Objective-C compile and link tools
require a low-level dependency tool to manage dependencies between source, object,
and executable code. On the other hand, there is a mismatch between the dependency
model of make and the Java compiler, creating the need for language-specific build
tool support for Java systems.

6 Build Maintenance

In this section, we study the relationship between build technology and build mainte-
nance by addressing RQ3 and RQ4.

(RQ3) Is build technology choice associated with build change activity?

We select metrics that measure three dimensions of build change activity, and cal-
culate them on a monthly basis. Table 3 describes the metrics that we consider and
provides our rationale for selecting them. The build commit proportion is normalized
in order to control for overall system activity. We do not normalize build commit size
nor build churn volume in order to simplify interpretation of the results. We use size

10https://wiki.openoffice.org/wiki/Build_System_Analysis

https://wiki.openoffice.org/wiki/Build_System_Analysis

. . . Study of the Relationship Between Build Technology and Build Maintenance 19

Low−level Abstraction Frame Dependency

0

10

20

30

Ant Jam Makefile Rake SCons Autotools CMake Maven Bundler Ivy

N
um

be
r

of
 a

ct
iv

e
pe

rio
ds

 (
m

on
th

s)

(a) Software forges.

0
50

10
0

15
0

20
0

25
0

30
0

Apache − Ant vs. Maven Debian − Make vs. Autotools GNU − Make vs. Autotools

N
um

be
r

of
 a

ct
iv

e
pe

rio
ds

 (
m

on
th

s)

(b) Software ecosystems.

Fig. 6 Number of active periods (months) per repository in the forges and ecosystems.

and rate of change metrics in lieu of change complexity ones because prior work sug-
gests that complexity tends to be highly correlated with size in both the source code
(Graves et al, 2000) and build system domains (McIntosh et al, 2012).

We consider the commits that contain a build change, including those that also
contain other changes, as build commits. We include commits that change the build
system as well as other parts of the system because any commit that changes the build
system is the result of some measure of build maintenance.

20 Shane McIntosh et al.

Since projects can migrate between technologies, we consider a technology active
in a repository for all months between (and including): (1) the month where commit
activity of files of its type first appear, and (2) the last month with commit activity
of a file of its type. To gain some insight into the maturity of the technology use in
the corpus, Figure 6 shows the distribution of commit activity (in number of months)
for a specific technology. The upper end of the boxes in Figure 6a indicates that at
least one quarter of the repositories with Ant, Make, Rake, SCons, Autotools, CMake,
Maven, and Ivy have at least 12 active months.

We focus our ecosystem studies on comparing Ant and Maven in Apache, and
Make and Autotools in Debian and GNU, since the ecosystems mostly converge on
those build technologies. Figure 6b compares the distributions of active months in
the studied ecosystems using beanplots (Kampstra, 2008). Beanplots are boxplots
in which the vertical curves summarize the distributions of different data sets. The
horizontal lines indicate the median values. Figure 6b shows that we study several
mature Apache projects, with a median active month count of 35 (Maven) and 41
(Ant). The GNU and Debian ecosystems have longer tails, dating back to 1988 and
1993 respectively.

Our analysis treats each technology independently, e.g., if a repository uses both
make and SCons, we calculate separate values for the metrics in Table 3 for make and
SCons. We then measure the distribution of metric values for each technology and we
rank these distributions to identify the build technologies with the highest or lowest
values using Tukey HSD tests (α = 0.01). We transform the commit proportion using
arcsin(

√
x), and build commit size and build churn volume using ln(x+ 1) to make

the distribution of variances more comparable among the groups (cf. Tukey HSD
test assumptions). Since there are two main technologies used in each of the studied
ecosystems, we use Mann-Whitney U tests (Bauer, 1972) instead of Tukey HSD tests
to compare them (α = 0.01).

Figure 7 shows the distributions of metric values in the forges. To ensure that
each repository is equally considered in our analysis, we select the median value
for each metric from each repository. We complement our median-based analysis by
performing a longitudinal analysis of each metric in the forges. We examine the ranks
of each technology as reported by the Tukey HSD tests when applied to each metric
on a monthly basis. The ranks are in decreasing order, i.e., the technology that has
the highest metric values appears in rank one. Figures illustrating the monthly trends
are provided in Appendix B.
Observation 4 – Maven requires the most build maintenance activity: Maven tends
to require a larger proportion of monthly commits than low-level technologies do.
Figure 7a shows that the Maven distribution has the highest median value. Analysis
of twelve months of activity shows that Maven maintains the top Tukey HSD rank
(see Appendix B).

Figure 7a suggest and the Tukey HSD test confirm that the median Autotools
build commit proportion tends to be lower than that of the other technologies in the
abstraction, low-level, and dependency management categories. Furthermore, Auto-
tools never appears in the top three ranks of the 12-month Tukey analysis, while
CMake and Bundler never appear lower than the third rank (see Appendix B). We
observe that of the 34,963 forge projects that use Autotools, 7,438 (21%) only imple-

. . . Study of the Relationship Between Build Technology and Build Maintenance 21

Low−level Abstraction Frame Dependency

0.0

0.1

0.2

0.3

0.4

Ant Jam Makefile Rake SCons Autotools CMake Maven Bundler Ivy

B
ui

ld
 c

om
m

it
pr

op
or

tio
n

(a) Build commit proportion.

Low−level Abstraction Frame Dependency

0

20

40

60

Ant Jam Makefile Rake SCons Autotools CMake Maven Bundler Ivy

B
ui

ld
 c

ha
ng

e
si

ze

(b) Build change size.

Low−level Abstraction Frame Dependency

0

100

200

Ant Jam Makefile Rake SCons Autotools CMake Maven Bundler Ivy

B
ui

ld
 c

hu
rn

 v
ol

um
e

(c) Build churn volume.

Fig. 7 Median build commit proportion, size, and churn in the studied forges.

22 Shane McIntosh et al.

ment the configuration step using Autotools while using make to implement the con-
struction step. In this case, Autotools cannot be fairly compared to tools being used
to implement complete build systems. After filtering away repositories that use both
Autotools and hand-written make specifications, the Autotools distribution grows to
similar proportions as the CMake one. Ivy also ranks near the bottom, but is fre-
quently used in tandem with Ant. When these technologies are grouped together, the
distribution grows to proportions similar to Maven.

Figure 7b shows that there is much more parity in the distributions of build change
sizes than of build commit proportion. We observe that Jam, Ant, and CMake stand
out as requiring larger changes than the other technologies in the median analysis of
Figure 7b, while Maven and SCons make more frequent appearances in the top three
ranks of the monthly analysis (see Appendix B).

Figure 7c shows that the median build churn volume for framework-driven spec-
ifications is higher than that of the other studied technologies. Tukey HSD tests of
the median samples confirm that the Maven rates are indeed the highest, followed
by CMake, and then SCons. Tukey HSD 12-month analysis complements the me-
dian results, with Maven and SCons never appearing below the second rank (see
Appendix B). CMake only drops to the third rank in the seventh month, appearing in
the top two ranks for all other months.

Corroborating our findings in the software forges, Figure 8a shows that Maven
tends to require a larger proportion of monthly build changes than Ant in the Apache
ecosystem. Indeed, while Figure 8b suggests that Maven commits tend to be smaller
than Ant commits in the Apache ecosystem, Figure 8c shows that on a monthly basis,
Maven still induces more churn than Ant in the Apache ecosystem. Mann-Whitney
U tests confirm that the reported differences are significant.

On the other hand, although Autotools requires a larger proportion of project
commits in both the Debian and GNU ecosystems, make changes tend to induce
more churn. Mann-Whitney U tests confirm that the GNU churn volume differences
are significant, however Debian results are inconclusive.

Summary: Framework-driven technologies like Maven tend to have a higher
build commit proportion and induce more build churn than low-level or
abstraction-based technologies (Observation 4).
Implications: While modern build technologies provide additional features, the
development teams adopting them should be aware of potentially higher mainte-
nance overhead.

6.1 Discussion

While the sizes of Jam and SCons changes are noteworthy, in addition to the ten-
dency of being used in larger systems (Observation 2), they are also low-level tech-
nologies, and are therefore expected to be more verbose than the other technolo-
gies. Ant and Maven change sizes may be inflated because of the verbose nature of
the XML markup (Lawrence, 2004). The verbosity of CMake changes is surprising,

. . . Study of the Relationship Between Build Technology and Build Maintenance 23

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Apache − Ant vs. Maven Debian − Make vs. Autotools GNU − Make vs. Autotools

B
ui

ld
 c

om
m

it
pr

op
or

tio
n

(a) Build commit proportion.

0
50

10
0

15
0

20
0

25
0

30
0

Apache − Ant vs. Maven Debian − Make vs. Autotools GNU − Make vs. Autotools

B
ui

ld
 c

ha
ng

e
si

ze

(b) Build commit sizes.

0
20

40
60

80
10

0

Apache − Ant vs. Maven Debian − Make vs. Autotools GNU − Make vs. Autotools

B
ui

ld
 c

hu
rn

 v
ol

um
e

(c) Build churn volume.

Fig. 8 Median build commit proportion, size, and churn in the studied ecosystems.

24 Shane McIntosh et al.

Table 4 Build maintenance overhead metrics.

Metric Description Rationale

Source-build
coupling

The logical coupling (Equation 1) be-
tween source code and build system
changes.

High source-build coupling indicates
that developers often need to provide
accompanying build changes with
their code changes, which may be dis-
tracting and costly in terms of context
switching.

Build author ra-
tio

The logical coupling (Equation 1) be-
tween source code and build system
authors.

High build author ratios suggest that
a large proportion of source code de-
velopers are impacted by build main-
tenance.

since CMake is an abstraction-based technology – a quality that one would expect to
decrease change size.

As described in the discussion of Section 5, the AOO team has remarked that
the feature for expressing pattern-based build dependencies available in the popular
GNU variant of make was missing in CMake. Hence, pattern-based dependencies
need to be repeated several times using CMake. Furthermore, when a change needs
to be made, it will need to be repeated several times, which may explain the inflation
of CMake build sizes we observe.

(RQ4) Is build technology choice associated with the overhead on source code devel-
opment?

Similar to our prior work (McIntosh et al, 2011), we select metrics that measure build
maintenance overhead using logical coupling (Gall et al, 1998), which is calculated
as shown below:

LC(source⇒ build) =
Support(source∩build)

Support(source)
(1)

Note that Support(X) in Equation 1 is the number of commits that satisfy the
clause X.

Table 4 describes the metrics we consider and provides our rationale for selecting
them. Similar to RQ3, we calculate each metric on a monthly basis. Source-build
coupling is calculated independently for each technology used in each repository,
e.g., LC(source⇒ Ant) and LC(source⇒Maven).

Note that in order to calculate the build author ratio, we need to identify the
original author of each change. A common practice in open source development is to
restrict VCS write access to a set of core developers (Bird et al, 2009b). Many authors
send their changes to the core developers for their consideration. After engaging in
a review process, the core developer will either discard the changes or commit them
to the VCS. Note that modern VCSs allows committers to record the original au-
thor’s name, distinguishing the roles of author and committer. Insofar as developers

. . . Study of the Relationship Between Build Technology and Build Maintenance 25

use this feature, our build author ratio analysis does not lose the original authorship
information.

Figure 9 shows the distribution of median source-build coupling and build author
ratio measures in the forge repositories. In the same vein as RQ3, we apply the Tukey
HSD test to the software forge data and the Mann-Whitney U test to the software
ecosystems data to detect significant differences among the resulting distributions.
We again apply the arcsin(

√
x) to the source-build coupling and build author ratio

prior to applying the Tukey HSD test to make the distribution of variances more com-
parable among the groups (cf. Tukey HSD test assumptions). We again complement
our median analysis with a monthly analysis of the Tukey ranks in Appendix B.
Observation 5 – Maven changes tend to be tightly coupled to source code changes:
Figure 9a shows that Maven changes tend to be tightly coupled with source code
changes. A Tukey HSD test ranks Maven in the top rank, followed by Rake, and then
make. The monthly Tukey analysis shows that Maven also appears alone in the top
rank for the twelve analyzed months (see Appendix B). This is surprising because one
would expect that Maven’s framework-driven behaviour would reduce the source-
build coupling.

Figure 9b shows that the Maven changes tend to be more evenly dispersed among
developers than changes of other technologies are. Tukey HSD tests confirm that a
larger proportion of developers for Maven projects make build changes than devel-
opers using the other technologies. The median Maven build author ratio is 65%,
indicating that in half of the studied Maven repositories, at least 65% of the source
code authors also make build changes. Maven and SCons require the largest propor-
tion of developers, with Tukey HSD tests ranking Maven and SCons in the top two
ranks consistently throughout the twelve analyzed months (see Appendix B).

Turning to the software ecosystems, Figure 10a shows that Maven and Autotools
tend to be more tightly coupled to source changes than Ant and make. Furthermore,
Figure 10b shows that Maven and Autotools changes tend to be more evenly dis-
persed among developers than Ant and Make changes. Mann-Whitney U tests con-
firm that these differences are significant.

The finding that is most consistent across the software forges and ecosystems is
that Maven changes tends to be tightly coupled to source code changes. To that end,
a larger proportion of the development team tends to become involved in maintaining
the Maven specifications.
Observation 6 – Build change more often co-occurs with source change than with-
out: Figure 11 shows the distributions of build commit sizes and proportions of
source-coupled (and non-coupled) build changes in the software forges. Irrespective
of technology, source-coupled build changes tend to induce more build churn than
non-coupled ones do, indicating that the build system changes most in tandem with
changes in the source code.

Mann-Whitney U tests of the coupled and non-coupled build changes for each
technology separately confirm that, as suggested by Figure 11a, source-coupled build
changes tend to be larger than non-coupled ones. Furthermore, higher-level build
technologies such as Maven and CMake have the largest source-coupled changes.
A Tukey HSD test of the source-coupled changes of each technology indicates that
Maven and CMake source-coupled changes are indeed the largest, however they are

26 Shane McIntosh et al.

Low−level Abstraction Frame Dependency

0.00

0.05

0.10

0.15

0.20

0.25

Ant Jam Makefile Rake SCons Autotools CMake Maven Bundler Ivy

Lo
gi

ca
l c

ou
pl

in
g

(a) Source-build coupling.

Low−level Abstraction Frame Dependency

0.25

0.50

0.75

1.00

Ant Jam Makefile Rake SCons Autotools CMake Maven Bundler Ivy

B
ui

ld
 a

ut
ho

r
ra

tio

(b) Build author ratio.

Fig. 9 Median source-build coupling and build author ratios in the studied forges.

indistinguishable from each other. Furthermore, the proportions of build changes that
are accompanied with source changes shown in Figure 11b indicate that, with the
exception of Maven, build changes tend to occur more frequently with source changes
than without.

Observation 7 – Coupling tends to decrease over time: Interestingly, we find that
framework-driven and abstraction-based technologies do not have lower source-build
coupling rates than low-level technologies. In fact, Maven build changes in the forges

. . . Study of the Relationship Between Build Technology and Build Maintenance 27

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Apache − Ant vs. Maven Debian − Make vs. Autotools GNU − Make vs. Autotools

Lo
gi

ca
l c

ou
pl

in
g

(a) Source-build coupling.

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Apache − Ant vs. Maven Debian − Make vs. Autotools GNU − Make vs. Autotools

B
ui

ld
 a

ut
ho

r
ra

tio

(b) Build author ratio.

Fig. 10 Median source-build coupling and build author ratios in the studied ecosystems.

and Apache projects are more tightly coupled to source code changes than Ant build
changes are. Moreover, the maintenance of framework-driven specifications typically
impacts a larger proportion of developers.

To study the stability of build overhead on source maintenance activities, we ana-
lyze how source-build coupling and build author ratio evolve. We analyze stability in
the large-scale projects, since the longitudinal analysis required would be infeasible
for the number of repositories in the forges and ecosystems. We focus our analy-

28 Shane McIntosh et al.

Ant Jam Makefile Rake SCons Autotools CMake Maven Bundler Ivy

0

20

40

60

80

C NC C NC C NC C NC C NC C NC C NC C NC C NC C NC

B
ui

ld
 c

om
m

it
si

ze

(a) Size of build changes when coupled with (C) or not coupled with (NC) source code changes.

Low−level Abstraction Frame Dependency

0.2

0.4

0.6

0.8

1.0

Ant Jam Makefile Rake SCons Autotools CMake Maven Bundler Ivy

P
ro

po
rt

io
n

of
 c

ou
pl

ed
 b

ui
ld

 c
om

m
its

(b) Proportion of build changes that are accompanied with source code changes.

Fig. 11 Comparison of coupled and not coupled build changes.

sis on the most active build technologies of each large-scale project. Table 1 shows
that make is the most active technology used in Android, while Autotools is used
by GNOME and PostgreSQL, and KDE uses CMake. PostgreSQL also uses make,
but we omit the trend because it is quite similar to the Autotools trend and clutters
the figure. KDE used Autotools prior to their migration to CMake (Neundorf, 2010;
Suvorov et al, 2012), hence we study trends with respect to both technologies.

. . . Study of the Relationship Between Build Technology and Build Maintenance 29

●
●

●

●
●

●●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●●
●

0.03

0.06

0.09

2006 2008 2010

Lo
gi

ca
l c

ou
pl

in
g

Android

●

●

●

● ●

●●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●
●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

● ●●

●●
●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

0.05

0.10

0.15

0.20

2006 2008 2010

B
ui

ld
 a

ut
ho

r
ra

tio

Android

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●●
●

●

●

●

●

●●

●

●

●

●

●●

●

● ●

●

●

●●

●

●
●

●

●

●●

●

●

●

●

●
●

●

●

●
●

0.10

0.15

0.20

0.25

2000 2004 2008

Lo
gi

ca
l c

ou
pl

in
g

GNOME

●

●

●

●

●

● ●

●

●
●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●
●●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●●

●

●

●
● ●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
● ●

●

●

0.4

0.5

0.6

0.7

2000 2004 2008

B
ui

ld
 a

ut
ho

r
ra

tio

GNOME

●

● ●

●

●
●

●

●
●

●

●

● ●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●●

●

●

●

●

●

●
●

● ●

● ●

●

●

●

●

●

●

●●
● ●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

● ●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

● ●
● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

0.00

0.05

0.10

0.15

0.20

1996 2000 2004 2008 2012

Lo
gi

ca
l c

ou
pl

in
g

PostgreSQL

●

●
●

●
●

●
●

●

● ●

●

● ●

●

●

●

● ●
●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

● ●

●
●

● ●
●

●

●●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●●
●

●

●

●
●

●●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

● ●

●●
●

●

●
●●

●
●

●

●
●

●

●●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●●
●● ●●

●

●

●

●

●●

0.25

0.50

0.75

1.00

1996 2000 2004 2008 2012

B
ui

ld
 a

ut
ho

r
ra

tio

PostgreSQL

●
●

●
●

●

●

●●

●
●

●
●●

●●

●

●

●●

●

●

●

●

●

●● ●

●

●
●

●

●

●

●
●

●
●

●

●

●
●

●

●
●

●

● ●

●

●

●
●

●
●

●

●● ●

●
●

●

●

●

●

●

●
●

●

●
●●

●

●

●
●●

●

●●●●

●

●

●

●

●●

0.0

0.1

0.2

0.3

0.4

2000 2004 2008 2012

Lo
gi

ca
l c

ou
pl

in
g

KDE

●

●

●
●

●

●

●●

●

●

●

●
●

●
●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ● ●

●

●

●
●

●

●
●

●●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●●

●

●
●

●

●

●

●

●

●

●
●

0.00

0.25

0.50

0.75

1.00

2000 2004 2008 2012

B
ui

ld
 a

ut
ho

r
ra

tio

KDE

Fig. 12 Monthly source-build coupling rate (left) and monthly build author ratio (right) in Android (make),
GNOME (Autotools), PostgreSQL (Autotools), and KDE (Autotools in grey, CMake in black).

Figure 12 shows that source-build coupling tends to decrease over time. Regres-
sion lines highlight the decreasing GNOME and PostgreSQL trends. Conversely, An-
droid coupling trends are increasing. However, early Android development months
had coupling rates below 0.05, so it is not surprising that the rate has grown to levels
that are more comparable to other make projects.

30 Shane McIntosh et al.

The decreasing trends in build author ratio in Figure 12 suggest that as projects
age, they adopt a concentrated build maintenance style, where a small team produces
most of the build changes. Initially, the GNOME project had months where up to
74% of the developers submitted build changes, while recently, the trend decreased
to 39%. Similarly, PostgreSQL build changes were initially quite dispersed, peaking
in late 1998 when every active developer submitted a build change. Recently, the
trend has dropped as low as 10%.

Summary: Framework-driven and abstraction-based build specification changes
tend to be more tightly coupled to source code (Observation 5), impact a larger
proportion of developers (Observation 5), and induce more churn (Observation
6) than low-level build specification changes. Yet, as large-scale projects age,
source-build coupling tends to drop (Observation 7) and specialized build main-
tenance teams tend to emerge.
Implications: Likely due to inflated source-build coupling rates, changes to
framework-driven technologies tend to be more evenly dispersed among devel-
opers. When selecting build technologies, teams should consider whether this
dispersion of build changes is tolerable.

6.2 Programming Language Centric Technology Analysis

We have shown that framework-driven build technologies trigger the most build ac-
tivity (Observation 4) and tend to be more tightly coupled to source code changes than
the other build technologies (Observation 5). However, in Section 5, we observed that
build technology choices are often constrained by the programming languages that
are used (Observation 3). For example, Maven is a Java-specific build technology,
and hence requires additional effort to build C projects. To provide a more practical
perspective, we need to compare build technologies within the scope of each pro-
gramming language. We do so using the software forges, where the most diversity in
build technology adoption was observed (cf. Section 5).

We first categorize the technologies typically used by a programming language
by examining Figure 5. In doing so, we produce the below mapping:

Java −→ Ant, Ivy, Maven
C, C++, Objective-C −→ make, Autotools, SCons, CMake
Ruby −→ Rake, Bundler

Next, we label each repository by examining the programming languages that are
used. Note that a repository may use several programming languages, and hence may
be labeled several times. Just as we did in our study of programming languages in
Section 5, we indicate that a repository uses a programming language if more than
10% of its source files are implemented using that language. Finally, we calculate
the build commit proportion and source-build coupling (Equation 1) metrics of each
labelled repository to compare the use of build technologies for each programming
language separately.

. . . Study of the Relationship Between Build Technology and Build Maintenance 31

Java

0.0

0.2

0.4

Ant Ivy Maven

B
ui

ld
 c

om
m

it
pr

op
or

tio
n

(a) Java

Ruby

0.0

0.1

0.2

0.3

Rake Bundler

B
ui

ld
 c

om
m

it
pr

op
or

tio
n

(b) Ruby

C C++ ObjC

0.0

0.1

0.2

0.3

Make SCons Auto CMake Make SCons Auto CMake Make SCons Auto CMake

B
ui

ld
 c

om
m

it
pr

op
or

tio
n

(c) C family

Fig. 13 Build commit proportion in the studied forges classified by source languages used.

6.2.1 Language-Specific Build Commit Proportion

Observation 8 – External dependency management specifications require plenty of
maintenance: Figure 13 shows the monthly build commit proportion for each group
of programming languages. Figure 13a confirms that Maven specifications do in-

32 Shane McIntosh et al.

Java

0.0

0.1

0.2

Ant Ivy Maven

Lo
gi

ca
l c

ou
pl

in
g

(a) Java

Ruby

0.00

0.05

0.10

0.15

0.20

Rake Bundler

Lo
gi

ca
l c

ou
pl

in
g

(b) Ruby

C C++ ObjC

0.0

0.1

0.2

0.3

Make SCons Auto CMake Make SCons Auto CMake Make SCons Auto CMake

Lo
gi

ca
l c

ou
pl

in
g

(c) C family

Fig. 14 Source-build coupling in the studied forges classified by source languages used.

deed change most frequently among the build technology choices for Java programs.
Tukey HSD tests confirm that the differences are statistically significant. Again, Ivy
and Ant appear to require the least amount of change, however they are often used
in tandem with each other. When combined, the distribution grows to proportions
similar to Maven. However, a Mann-Whitney U test indicates that Maven specifi-
cations still changes more frequently than combined Ant and Ivy specifications do,

. . . Study of the Relationship Between Build Technology and Build Maintenance 33

suggesting that Ant with Ivy may be a more cost-effective alternative than Maven
for Java projects that express external dependencies (from the point of view of build
maintenance).

As shown in Figures 13a and 13b, the specifications that denote external project
dependencies (i.e., Ivy and Bundler) have similar commit proportion as (if not higher
than) the specifications that define build behaviour (i.e., Ant and Rake). This indi-
cates that for Java and Ruby systems, a large amount of build maintenance activity is
generated by external rather than internal dependency management specifications.

6.2.2 Language-Specific Source-Build Coupling

Figure 14 shows the source-build coupling between build technologies and specific
programming languages. Figure 14a shows that similar to the overall coupling in
Figure 9a, Maven is tightly coupled to Java code. This reinforces Observation 5,
suggesting that Maven changes are indeed tightly coupled with source code.

While Figure 13c shows that CMake specifications have a higher commit pro-
portion than the other technologies for C family languages, Figure 14c shows that
CMake has the lowest median coupling rate for C and Objective C. This finding sug-
gests that C and Objective C projects can reduce source-build coupling by migrating
to CMake.

Summary: External dependency management accounts for much of the build
maintenance activity in Java and Ruby repositories (Observation 8). Indeed,
Maven specifications tend to be tightly coupled to Java source code. CMake tends
to be loosely coupled with C family source code changes.
Implications: Since Ant with Ivy tends to change less frequently than Maven and
offers a comparable feature set, it is an option that Java project teams should con-
sider. Furthermore, C and Objective-C projects should consider CMake, since
CMake repositories tend to have lower source-build coupling rates than the other
C and Objective-C repositories.

6.3 Discussion

Surprisingly, we find that use of Maven is often accompanied with (1) higher build
maintenance activity rates (Observation 4), (2) tighter coupling between source code
and build system changes (Observation 5), and (3) a higher dispersion rate of changes
among team members (Observation 5). We assert that these rate, size, and authorship
measurements of build changes capture relevant dimensions of build maintenance.
However, the build system is a means to improve overall maintenance team produc-
tivity. In other words, the increases in build maintenance that we observe in Maven
may actually be a net benefit to the development team if Maven offers additional
features that accelerate the development process. We plan to investigate the complex
interplay between build and overall maintenance effort in future work.

34 Shane McIntosh et al.

7 Build Technology Migration

In this section, we study whether build technology migration eases the burden of build
maintenance by addressing RQ5.

(RQ5) Does build technology migration reduce the amount of build maintenance?

A recent trend suggests that projects are migrating towards CMake (Grimmer, 2010;
Linden Labs, 2010; Neundorf, 2010) and Maven (Ebersole, 2007). Hence, we focus
our migration study on these technologies. Specifically, we compare median monthly
churn rate, source-build coupling, and build author ratios pre- and post-migration
using Wilcoxon signed rank tests (α = 0.01). We use Wilcoxon signed rank tests
instead of Mann-Whitney U tests because we have paired observations, i.e., the same
project pre- and post-migration.

We automatically detect repositories that have migrated to CMake or Maven tech-
nologies by checking if CMake or Maven specifications appear in the repository at
least one period after another technology. Our approach detects 89 ecosystem project
migrations (≈ 2%) and 7,225 forge project migrations (≈ 4%). While prior work has
studied build technology migration [e.g., Suvorov et al (2012)], the focus has gener-
ally been on migration in a few large projects. To the best of our knowledge, this is
the first build migration study to focus on a large collection of migrations.
Observation 9 – Build technology migration often pays off: Figure 15 shows that,
despite Maven projects typically having higher source-build coupling rates (Obser-
vation 5), migration from Ant to Maven tends to have little impact on churn rate or
source-build coupling. In the projects that have migrated, the median monthly churn
rate and source-build coupling rate of Maven is almost identical to those of Ant (Fig-
ures 15a and 15b). Also contrary to Observation 5, we find that the build author ratio
tends to drop as projects migrate from Ant to Maven (Figure 15c). Wilcoxon signed
rank tests of build author ratio confirm that the results are statistically significant,
while churn rate and source-build coupling results are inconclusive.

When projects migrate from make or Autotools to CMake, the source-build cou-
pling also tends to decrease, implying that a migration to CMake eases the burden of
build maintenance. Similar to Maven, Figure 15c indicates that teams tend to adopt
a more concentrated build maintenance style after migrating to CMake. Wilcoxon
signed rank tests confirm that the decreases in source-build coupling and build author
ratios are statistically significant.

Complementing our software forge findings, Figure 16a shows that the median
monthly churn rate in the studied ecosystems is rarely impacted by migration projects.
Figure 16b shows that again source-build coupling tends to drop after a migration to
CMake, however is rarely impacted by migration to Maven. Wilcoxon signed rank
tests confirm that the CMake migration results in Debian and GNU ecosystems are
statistically significant, however the Maven results in Apache are inconclusive. The
Wilcoxon signed rank tests also indicate that drops in build author ratios in the studied
ecosystems are statistically significant.

. . . Study of the Relationship Between Build Technology and Build Maintenance 35

0
20

40
60

80
10

0

Ant to Maven Make/Autotools to CMake

B
ui

ld
 c

ha
ng

e
si

ze

(a) Build churn rates.

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Ant to Maven Make/Autotools to CMake

Lo
gi

ca
l c

ou
pl

in
g

(b) Logical coupling.

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Ant to Maven Make/Autotools to CMake

B
ui

ld
 a

ut
ho

r
ra

tio

(c) Build author ratio.

Fig. 15 Build technology migration in the studied forges

36 Shane McIntosh et al.

0
20

40
60

80
10

0

Ant to Maven Make/Autotools to CMake

B
ui

ld
 c

ha
ng

e
si

ze

(a) Build churn rates.

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Ant to Maven Make/Autotools to CMake

Lo
gi

ca
l c

ou
pl

in
g

(b) Logical coupling.

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Ant to Maven Make/Autotools to CMake

B
ui

ld
 a

ut
ho

r
ra

tio

(c) Build author ratio.

Fig. 16 Build technology migration in the studied ecosystems

. . . Study of the Relationship Between Build Technology and Build Maintenance 37

7.1 Migration in large-scale projects

In our study of software forges and ecosystems, we find that build author ratios and
source-build coupling tend to decrease. This suggests that technology migration is
typically accompanied by a shift of build maintenance from developers to a more
specialized build maintenance team. Fewer developers are responsible for build main-
tenance, freeing them up to focus on making source code changes.

It is unclear whether the decrease in source-build coupling and increase in build
team specialization are the result of the migration, perhaps due to the awareness of
build maintenance issues raised during migration, or simply due to the trends that
we observed as a project ages (Observation 7). To investigate this, we performed a
longitudinal study of the large-scale migration from Autotools to CMake in KDE.

Coupling trends for KDE in Figure 12 are decreasing for both Autotools and
CMake. After the early development periods in 1997, Autotools follows a slowly
decreasing coupling trend from 1998-2004. In 2005, the coupling slowly rises back
to 0.1 again, suggesting that it has stabilized. The appearance of the black line in late
2004 indicates that implementation of the new KDE CMake build system has begun.
From late 2004 to early 2006, the experimental KDE CMake build system rarely
requires coupled changes with the source code, since the Autotools build system is
still the official one. The switchover period when the CMake build system became
the official one is indicated by the steep slope upwards in CMake and downwards in
Autotools in early 2006. There is a brief period when the coupling trend is increasing
until it peaks at 0.15 in 2007, but after this the trend begins decreasing again, dipping
as low as 0.05 in 2011. The trend does increase again near the end of 2011, which
coincides with the KDE team preparing for their 4.8 release. As the KDE project
entered 2012, the coupling dropped again to 0.06. The CMake migration has reduced
the source-build coupling from a roughly stable 0.1 to 0.05.

Figure 12 shows decreasing trends in KDE build author ratio for both Autotools
and CMake build systems. After an early period of highly dispersed changes, and a
trend of growth from 1998 to 1999, a decreasing trend in Autotools authorship begins
in 2000. In 2004, the KDE Autotools trend levels off at roughly 50%. After an initial
period of growth in 2007, the KDE CMake decreases further, dropping as low as
24%.

Summary: While changes in monthly build churn rates and source-build coupling
prior to and post-migration were inconclusive at times, build author ratio tends
to decrease, indicating that more specialized build maintenance teams tend to
emerge when performing migrations.
Implications: The dedication of build experts that we observe during build tech-
nology migration can defer build maintenance to a dedicated team, which may
help reduce the impact of build maintenance that other software developers must
pay.

38 Shane McIntosh et al.

8 Threats to Validity

We now discuss the threats to the validity of our study.

8.1 Construct Validity

We assume that developers submit related changes using one commit, although our
prior work has shown that this may not always be the case (McIntosh et al, 2011).
There is a well-documented lack of well-linked data (Bird et al, 2009a; Nguyen et al,
2010) that prevents us from grouping related commits together. Regardless, our anal-
ysis draws on comparisons among repositories, not on the absolute values of the
metrics.

Abstraction-based technologies are used to generate low-level specifications. We
assume that developers do not commit the generated files, and that projects with com-
mits containing low-level specifications prepared the changes by hand. This assump-
tion may not always hold, creating noise in our dataset. However, if this noise were
heavily influencing our conclusions, we would expect inflated results from the low-
level technologies, while we observe that framework-based and abstraction-based
technologies tend to induce more build maintenance activity.

8.2 Internal Validity

We assert that by studying varying trends in the recorded version history of projects
using different build technologies, we measure characteristics of build maintenance
that are build technology-specific. It may be that the phenomena that we observe are
a property of the development cultures of the studied hosts. It may also be that the
observations are purely coincidental. However, the large-scale nature of our study of
177,039 repositories spread across four software forges, three software ecosystems,
and four large-scale projects, as well as the consistency of our observations across
this dataset reduces the likelihood that our observations are purely coincidental.

Counting the number of changes (or the number of lines changed) may not truly
reflect the complexity of those changes. For example, while more numerous, Maven
changes may be trivial to implement when compared to make changes. Moreover, the
reliability of the build system may also impact not only the build maintenance effort,
but also the overall development as well. For example, make-based build systems
may be more prone to dependency errors, whereas modern tools automate much of
the internal dependency management. As a result, broken builds and other build-
related problems may occur more frequently and/or may cause more damage (by
slowing build-related feedback for development teams) using traditional make-based
systems. We plan to investigate these and other topics in future work.

. . . Study of the Relationship Between Build Technology and Build Maintenance 39

8.3 Reliability Validity

We use a modified version of the Github Linguist tool11 to conservatively classify
files as source or build files. We have made our extended version available online.12

While our classification tool is lightweight enough to iterate over all of the changes
in our large corpus, we may miss files that are build or source related that do not
conform to filename conventions.

8.4 External Validity

Although we study a large corpus of 177,039 repositories, we focus on a limited num-
ber of forges, ecosystems, and projects. Also, we only study open source repositories.
As such, our results may not generalize to other open source or proprietary repository
hosts. We plan to address this in future work.

There are hundreds of build technologies, and of these, we selected a small sub-
set for study. Our findings are entirely bound to the studied technologies. However,
the build technologies that we selected for study cover a considerable portion of the
repositories in the corpus.

9 Related Work

We present the related work with respect to build system maintenance, tool assistance
for build maintenance, and build migration projects.

9.1 Build System Maintenance

There have been several recent studies on build system maintenance. Our prior work
shows that source code and build system tend to co-evolve (Adams et al, 2008; McIn-
tosh et al, 2012). Nadi et al. show that inconsistencies between the source code and
build system of the Linux kernel can cause defects (Nadi and Holt, 2011) and propose
a method for automatically detecting these inconsistencies (Nadi and Holt, 2012). In-
deed, Neitsch et al. find that abstractions tend to “leak” between source and build
domains (Neitsch et al, 2012). In order to help Linux developers avoid these incon-
sistencies, Dietrich et al. propose a technique for extracting the mapping of features
to source code from the Linux build system (Dietrich et al, 2012). Hochstein et al. and
our prior work show that build maintenance imposes a non-trivial “tax” on the soft-
ware development (Hochstein and Jiao, 2011; McIntosh et al, 2011). In this paper,
we find that build migration and team specialization can offer some relief for many
developers by offloading the responsibility of build maintenance on a dedicated team
of build maintainers.

11https://github.com/github/linguist/
12http://sailhome.cs.queensu.ca/replication/shane/EMSE2013/

https://github.com/github/linguist/
http://sailhome.cs.queensu.ca/replication/shane/EMSE2013/

40 Shane McIntosh et al.

9.2 Tool Assistance for Build Maintenance

Researchers have created several tools to assist with build maintenance. Adams et
al. (Adams et al, 2007) and Tu and Godfrey (Tu and Godfrey, 2002) developed tools
to visualize and query build dependencies. Tamrawi et al. propose a technique for vi-
sualizing and verifying build dependencies using symbolic dependency graphs (Tam-
rawi et al, 2012). Al-Kofahi et al. propose a tool for extracting the semantics related
to make specification changes (Al-Kofahi et al, 2012). In this paper, we do not pro-
pose a tool, but rather provide empirical evidence of the relationship between build
technology and build maintenance.

9.3 Build Technology Migration

Recent research has also studied build system migration efforts, i.e., reimplementa-
tion of a build system using a different build technology or build design methodology.
Suvorov et al. studied failed and successful build migrations, reporting that failed
migrations often do not gather sufficient requirements prior to prototyping (Suvorov
et al, 2012). Zadok found that the migration from make to Autotools in the Berke-
ley Automounter project reduced build code and accelerated development (Zadok,
2002). Complementing Zadok’s work, we provide further evidence that build migra-
tion projects can help to reduce the build maintenance burden.

10 Conclusions

Build systems enable modern development practices such as continuous integration
and continuous delivery. However, they require a substantial investment of mainte-
nance effort to remain correct as source files, features, and supported platforms are
added and removed. Build maintenance is a nuisance for practitioners, who often
refer to it as a “tax”.

A wide variety of technologies are available to enable development teams to im-
plement build systems.13 Although it is of paramount importance for researchers and
tool developers, little is known about which build technologies are broadly adopted
and whether technology choice is associated with build maintenance activity.

In this paper, we study the relationship between build technology selection and
build maintenance to help practitioners make more informed build technology choices
and narrow the scope of future research. In performing a large-scale study of 177,039
open source repositories spread across four forges, three ecosystems, and four large
projects, we make the following observations according to three dimensions of study:

Build Technology Adoption: Although many projects continue to use traditional tech-
nologies like make, language-specific technologies like Rake have recently sur-
passed them in terms of market share. Furthermore, there is indeed a strong rela-
tionship between the programming languages used to implement a system and the

13http://en.wikipedia.org/wiki/List_of_build_automation_software

http://en.wikipedia.org/wiki/List_of_build_automation_software

. . . Study of the Relationship Between Build Technology and Build Maintenance 41

build technology used to assemble it. Although researchers and service providers
should continue to focus on older build technologies like make that still account
for a large portion of the market share, more modern build technologies are be-
ginning to gain popularity and should also be considered for study.
Knowing this, development service providers can tailor their solutions to fit their
target development demographic more appropriately. For example, cloud-based
build infrastructure service providers like Travis-CI14 can tailor their solutions to
provide “first-class” service for the more popular, language-specific build tech-
nologies in order to stay ahead of the trend.

Build Maintenance: Surprisingly, we find that the modern, framework-driven and
dependency management technologies tend to induce more churn and be more
tightly coupled to source code than low-level and abstraction-based technologies
do. Furthermore, we find that much of the Java and Ruby build maintenance ef-
fort is spent on external rather than internal dependency management. Yet, irre-
spective of technology choice, as projects age, the source-build coupling tends to
decrease and they tend to adopt a concentrated build maintenance style.
There appear to be additional maintenance activities associated with more modern
build technologies, suggesting that while they provide additional features, there is
a risk associated with adopting them that development teams should be aware of.
Likely due to an inflated source-build coupling rate, changes to framework-driven
technologies tend to be more evenly dispersed among developers. Development
teams should consider whether this wide dispersion of build changes among the
team is an appropriate fit for their development process.

Build Technology Migration: Most build technology migration projects successfully
reduce the impact that build maintenance has on developers by shifting build
maintenance work from typical developers onto a smaller, dedicated team of build
maintainers.

References

Adams B, De Schutter K, Tromp H, Meuter W (2007) Design recovery and mainte-
nance of build systems. In: Proc. of the 23rd Int’l Conf. on Software Maintenance
(ICSM), pp 114–123

Adams B, Schutter KD, Tromp H, Meuter WD (2008) The Evolution of the Linux
Build System. Electronic Communications of the ECEASST 8

Al-Kofahi JM, Nguyen HV, Nguyen AT, Nguyen TT, Nguyen TN (2012) Detecting
Semantic Changes in Makefile Build Code. In: Proc. of the 28th Int’l Conf. on
Software Maintenance (ICSM), pp 150–159

Bauer DF (1972) Constructing Confidence Sets Using Rank Statistics. Journal of the
American Statistical Association 67(339):687–690

Bird C, Bachmann A, Aune E, Duffy J, Bernstein A, Filkov V, Devanbu P (2009a)
Fair and Balanced? Bias in Bug-Fix Datasets. In: Proc. of the 7th joint meeting of
the European Software Engineering Conf. and the Symposium on the Foundations
of Software Engineering (ESEC/FSE), pp 121–130

14http://travis-ci.org/

http://travis-ci.org/

42 Shane McIntosh et al.

Bird C, Rigby PC, Barr ET, Hamilton DJ, German DM, Devanbu P (2009b) The
Promises and Perils of Mining Git. In: Proc. of the 6th Working Conf. on Mining
Software Repositories (MSR)

Dietrich C, Tartler R, Schröder-Preikschat W, Lohmann D (2012) A Robust Approach
for Variability Extraction from the Linux Build System. In: Proc. of the 16th Int’l
Software Product Line Conference (SPLC), pp 21–30

Ebersole S (2007) Maven migration. http://lists.jboss.org/pipermail/hibernate-
dev/2007-May/002075.html, last viewed: 18-Mar-2010

Feldman S (1979) Make - a program for maintaining computer programs. Software -
Practice and Experience 9(4):255–265

Gall H, Hajek K, Jazayeri M (1998) Detection of logical coupling based on product
release history. In: Proc. of the 14th Int’l Conf. on Software Maintenance (ICSM),
pp 190–198

Graves TL, Karr AF, Marron JS, Siy H (2000) Predicting Fault Incidence using Soft-
ware Change History. Transactions on Software Engineering (TSE) 26(7):653–661

Grimmer L (2010) Building MySQL Server with CMake
on Linux/Unix. http://www.lenzg.net/archives/

291-Building-MySQL-Server-with-CMake-on-LinuxUnix.html, Last
viewed: 20-Aug-2010

Herraiz I, Robles G, Gonzalez-Barahona J, Capiluppi A, Ramil J (2006) Comparison
between SLOCs and number of files as size metrics for software evolution analysis.
In: Proc. of the 10th European Conf. on Software Maintenance and Reengineering
(CSMR), pp 213–221

Hochstein L, Jiao Y (2011) The cost of the build tax in scientific software. In: Proc.
of the 5th International Symposium on Empirical Software Engineering and Mea-
surement (ESEM), pp 384–387

Humble J, Farley D (2010) Continuous Delivery: Reliable Software Releases through
Build, Test, and Deployment Automation. Addison-Wesley

Kampstra P (2008) Beanplot: A boxplot alternative for visual comparison of dis-
tributions. Journal of Statistical Software, Code Snippets 28(1):1–9, URL http:

//www.jstatsoft.org/v28/c01/

Lawrence R (2004) The space efficience of XML. Information and Software Tech-
nology (IST) 46(11):753–759

Linden Labs (2010) CMake. http://wiki.secondlife.com/wiki/CMake, Last
viewed: 20-Aug-2010

McIntosh S, Adams B, Nguyen THD, Kamei Y, Hassan AE (2011) An Empirical
Study of Build Maintenance Effort. In: Proc. of the 33rd Int’l Conf. on Software
Engineering (ICSE), pp 141–150

McIntosh S, Adams B, Hassan AE (2012) The evolution of Java build systems. Em-
pirical Software Engineering 17(4-5):578–608

Miller P (1998) Recursive make considered harmful. In: Australian Unix User Group
Newsletter, vol 19, pp 14–25

Miller RG (1981) Simultaneous Statistical Inference. Springer
Mockus A (2007) Software support tools and experimental work. In: Proc. of the Int’l

Conf. on Empirical Software Engineering Issues: Critical Assessment and Future
Directions, pp 91–99

http://www.lenzg.net/archives/291-Building-MySQL-Server-with-CMake-on-LinuxUnix.html
http://www.lenzg.net/archives/291-Building-MySQL-Server-with-CMake-on-LinuxUnix.html
http://www.jstatsoft.org/v28/c01/
http://www.jstatsoft.org/v28/c01/
http://wiki.secondlife.com/wiki/CMake

. . . Study of the Relationship Between Build Technology and Build Maintenance 43

Mockus A (2009) Amassing and indexing a large sample of version control systems:
Towards the census of public source code history. In: Proc. of the 6th Working
Conf. on Mining Software Repositories (MSR), pp 11–20

Nadi S, Holt R (2011) Make it or Break it: Mining Anomalies in Linux Kbuild. In:
Proc. of the 18th Working Conf. on Reverse Engineering (WCRE), pp 315–324

Nadi S, Holt R (2012) Mining Kbuild to Detect Variability Anomalies in Linux. In:
Proc. of the 16th European Conf. on Software Maintenance and Reengineering
(CSMR), pp 107–116

Neitsch A, Wong K, Godfrey MW (2012) Build System Issues in Multilanguage
Software. In: Proc. of the 28th Int’l Conf. on Software Maintenance, pp 140–149

Neundorf A (2010) Why the KDE project switched to CMake – and how (continued).
http://lwn.net/Articles/188693/, last viewed: 06-Mar-2010

Neville-Neal GV (2009) Kode vicious: System changes and side effects. Communi-
cations of the ACM 52(4):25–26

Nguyen THD, Adams B, Hassan AE (2010) A Case Study of Bias in Bug-Fix
Datasets. In: Proc. of the 17th Working Conf. on Reverse Engineering (WCRE),
pp 259–268

Savage B (2010) Build Systems: Relevancy of Automated
Builds in a Web World. http://www.brandonsavage.net/

build-systems-relevancy-of-automated-builds-in-a-web-world/

Smith P (2011) Software Build Systems: Principles and Experience, 1st edn.
Addison-Wesley

Suvorov R, Nagappan M, Hassan AE, Zou Y, Adams B (2012) An Empirical Study of
Build System Migrations in Practice: Case Studies on KDE and the Linux Kernel.
In: Proc. of the 28th Int’l Conf. on Software Maintenance (ICSM), pp 160–169

Tamrawi A, Nguyen HA, Nguyen HV, Nguyen T (2012) Build Code Analysis with
Symbolic Evaluation. In: Proc. of the 34th Int’l Conf. on Software Engineering
(ICSE), pp 650–660

Tu Q, Godfrey M (2002) The build-time software architecture view. In: Proc. of Int’l
Conf. on Software Maintenance (ICSM), pp 398–407

Zadok E (2002) Overhauling Amd for the ’00s: A Case Study of GNU Autotools. In:
Proc. of the FREENIX Track on the USENIX Technical Conf., USENIX Associa-
tion, pp 287–297

http://lwn.net/Articles/188693/
http://www.brandonsavage.net/build-systems-relevancy-of-automated-builds-in-a-web-world/
http://www.brandonsavage.net/build-systems-relevancy-of-automated-builds-in-a-web-world/

44 Shane McIntosh et al.

1 .PHONY: all

2 all: example

3
4 example: main.o

5 gcc -o example main.o

6
7 main.o: main.c

8 gcc -c main.c

(a) Make

1 rule LinkRule {

2 Depends $(1) : $(2) ;

3 Link $(1) : $(2) ;

4 }

5
6 actions Link {

7 gcc -o $(1) $(2)

8 }

9
10 rule CompileRule {

11 Depends $(1) : $(2) ;

12 Compile $(1) : $(2) ;

13 }

14
15 actions Compile {

16 gcc -c -o $(1) $(2)

17 }

18
19 LinkRule example : main.o ;

20 CompileRule main.o : main.c ;

(b) Jam

1 <project name="example">

2 <target name="compile">

3 <javac

4 destdir="classes"

5 srcdir="src"

6 includes="**/*. java"

7 />

8 </target >

9
10 <target

11 name="link"

12 depends="compile"

13 >

14 <jar

15 jarfile="example.jar"

16 basedir="classes"

17 />

18 </target >

19 </project >

(c) Ant

1 env = Environment(CXX = "g++")

2
3 srcs = Split("main.cc")

4
5 objects = env.Object(source = srcs)

6
7 t = env.Program(target =" example", source=objects)

8 Default(t)

(d) SCons

1 task :default => [: utest]

2
3 task :utest do

4 ruby utest.rb

5 end

(e) Rake

Fig. 17 Example low-level technology specifications.

A Build Technology Examples

In this appendix, we briefly describe how each of the studied technologies can be used to specify a simple
build system.

A.1 Low-Level

Figure 17 provides working examples of the five studied low-level build technologies.
Make: One of the earliest build technologies on record is Feldman’s make tool (Feldman, 1979), which
automatically synchronizes program sources with deliverables. Make specifications outline target-dependency-
recipe tuples. Targets specify files created by a recipe, i.e., a shell script that is executed when the target
either: (1) does not exist, or (2) is older than one or more of its dependencies, i.e., a list of other files and
targets.

The make specification snippet in Figure 17a describes three target-dependency-recipe tuples. Lines
2, 4, and 7 list targets to the left of the colons and dependency lists to the right. Recipes are specified for
the main.o and example targets on lines 5 and 8. Line 1 of Figure 17a specifies that the all target is
phony, representing an abstract phase in the build process rather than a concrete file in the filesystem.
Jam: Jam provides a more procedural-style structure for target-dependency-recipe tuples. Figure 17b
shows how rules (the equivalent of make tuples) can be specified (lines 1-4 and 10-13). Dependencies are
expressed by invoking the built-in Depends rule on lines 2 and 11. Jam actions (the equivalent of make
recipes) for C compilation and object code linking are defined on lines 6-8 and 15-17 respectively.
Ant: Ant borrows the target-dependency-recipe concept from make, however all Ant targets are abstract.
When an Ant target is triggered, a list of specified tasks (the equivalent of make recipes) are invoked. Ant
tasks execute Java code rather than shell scripts to synchronize sources with deliverables.

Figure 17c shows an Ant specification that describes two targets, i.e., compile (lines 2-8) and link

(lines 10-18). The compile target invokes the javac task (lines 3-7), which executes the javac compiler.
The link target invokes the jar task (lines 14-17), which executes the jar command. The dependency
between the link and compile targets is expressed on line 12 using the depends target attribute.

. . . Study of the Relationship Between Build Technology and Build Maintenance 45

1 AC_INIT ([example], [1.0])

2 AM_INIT_AUTOMAKE

3 AC_PROG_CC

4 AC_CONFIG_HEADERS ([config.h])

5 AC_CONFIG_FILES ([Makefile])

6 AC_OUTPUT

(a) Autotools (Autoconf)

1 bin_PROGRAMS = example

2 example_SOURCES = main.c

(b) Autotools (Au-
tomake)

1 cmake_minimum_required(VERSION 2.6)

2 project(Example)

3
4 add_executable(example main.cc)

(c) CMake

Fig. 18 Example abstraction-based technology specifications.

SCons: SCons provides several advanced build system features (e.g., implicit dependency tracking for
popular programming languages) and allows maintainers to write highly portable build specifications using
Python. Line 7 of Figure 17d shows how a binary example can be assembled from object code. Line 5
shows how object code can be generated using SCons built-in support for C++ compilation. Environmental
settings (e.g., compilers, linkers, and flags) are automatically detected, however parameters passed to the
Environment() function call will override the detected settings, as shown on line 1.
Rake: Rake is a modern build tool with advanced support for building Ruby applications. Similar to
SCons, Rake specifications are written in a high-level scripting language (i.e., Ruby), to give build main-
tainers the power to express complex relationships and transformations in a highly portable language.
Similar to Ant, Rake tasks (the equivalent of targets in make) are abstract.

The example snippet in Figure 17e shows how a unit testing task utest can be specified (lines 3-5).
Line 4 describes the recipe that is executed when utest is triggered. Line 1 specifies that the default

target depends upon the utest target.

A.2 Abstraction-Based

Figure 18 provides working examples of the two studied abstraction-based technologies.
Autotools: GNU Autotools specifications describe external and internal dependencies, configurable compile-
time features, and platform requirements. These specifications are parsed to generate make specifications
that satisfy the described constraints.

Autotools is actually a large collection of build tools that work together to generate build systems
according to specifications. Two of the most commonly used tools are autoconf and automake, for
which we provide example specifications in Figures 18a and 18b respectively. Lines 1 and 2 of Figure 18a
initialize the autoconf environment, specifying that our project name is example version 1.0 and that
automake is also necessary. Line 3 specifies an environment dependency on a C compiler, while lines 4
and 5 request that the configuration step store preprocessor directives in a file named config.h, and store
the build system implementation in a file called Makefile. Line 1 of Figure 18b specifies that a deliverable
called example should be constructed during the build process and that it should be deployed in the bin
directory. Line 2 states that main.c is a source file that should be compiled and linked into the example
binary.
CMake: Similar to Autotools, CMake abstractions can be used to generate make specifications, but can
also generate Microsoft Visual Studio and Apple Xcode project files. Figure 18c specifies that a build
system should be generated to produce a binary called example by compiling and linking main.cc (line
4) as a part of a project called Example (line 2). Line 1 denotes that CMake version 2.6 (or later) should
be used to parse the specification.

A.3 Framework-Driven

Below we describe the studied Maven framework-driven technology.
Maven: Maven assumes that source and test files are placed in default locations and that projects adhere
to a typical Java dependency policy, unless otherwise specified. If projects abide by the conventions, Maven
can infer build behaviour automatically without any explicit specification. For example, Figure 19a does
not specify a location for source or output files. Convention specifies that source and unit test code appear
under src/main/java and src/test/java respectively.

46 Shane McIntosh et al.

1 <project >

2 <modelVersion >4.0.0 </ modelVersion >

3 <groupId >

4 an.example.application

5 </groupId >

6 <artifactId >example </artifactId >

7 <packaging >jar </packaging >

8 <version >1.0</ version >

9 <name >example </name >

10 <build >

11 <plugins >

12 <plugin >

13 <groupId >

14 org.apache.maven.plugins

15 </groupId >

16 <artifactId >

17 maven -compiler -plugin

18 </artifactId >

19 <version >2.3.2 </ version >

20 <configuration >

21 <source >1.5 </ source >

22 <target >1.7 </ target >

23 </configuration >

24 </plugin >

25 </plugins >

26 </build >

27 <dependencies >

28 <dependency >

29 <groupId >junit </groupId >

30 <artifactId >junit </ artifactId >

31 <version >3.8.1 </ version >

32 </dependency >

33 </dependencies >

34 </project >

(a) Maven

1 <ivy -module version ="2.0" >

2 <info

3 organisation =" example"

4 module =" application"

5 />

6 <dependencies >

7 <dependency

8 org="junit"

9 name="junit"

10 rev ="3.8.1"

11 />

12 </dependencies >

13 </ivy -module >

(b) Ivy

1 source "https :// rubygems.org"

2
3 gem "rake", " >=10.0.3"

4 gem "rspec", "2.13.0"

(c) Bundler

Fig. 19 Example Framework-driven and dependency management technology specifications.

Lines 10-18 of Figure 19a show how the Maven convention can be overridden through configuration.
The Java compiler is instructed to operate in Java 1.5 source mode (line 15), and generate bytecode that is
compatible with the Java 1.7 runtime environment (line 16).

A.4 Dependency Management

Figure 19 provides working examples of dependency management in Maven (Figure 19a) and the two
studied dependency management technologies (Figures 19b and 19c).
Maven: In addition to providing a framework-driven build environment, Maven doubles as a dependency
management technology. Lines 22-26 of Figure 19a provide an example dependency declaration on the
JUnit tool, version 3.8.1.
Ivy: Ivy provides dependency management features that are most notably leveraged by Ant. Figure 19b
shows an Ivy specification for the same JUnit dependency as depicted in Figure 19a.
Bundler: Bundler provides packaging and dependency management for Ruby applications. Line 1 of
Figure 19c specifies that bundler should download gems, i.e., Ruby packages, from the given host. Lines 2
and 3 specify dependencies on Rake version 10.0.3 (at least) and rspec version 2.13.0 (exact).

B Additional Build Maintenance Figures

We perform longitudinal analyses of the Tukey HSD ranks for each metric in the forges to complement
our median-based analyses in Section 6. Figures 20 and 21 show only the first twelve months of history
and the top three ranks to improve the readability of the figures. Unfiltered figures are available online.15

15http://sailhome.cs.queensu.ca/replication/shane/EMSE2013/

http://sailhome.cs.queensu.ca/replication/shane/EMSE2013/

. . . Study of the Relationship Between Build Technology and Build Maintenance 47

●● ● ●

●

●● ●● ●●

1

2

3

1 2 3 4 5 6 7 8 9 10 11 12
Month number

R
an

k

Build Technology

●

●

Ant

Autotools

Bundler

CMake

Ivy

Jam

Makefile

Maven

Rake

SCons

(a) Build commit proportion.

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

● ●

●

1

2

3

1 2 3 4 5 6 7 8 9 10 11 12
Month number

R
an

k

Build Technology

●

●

Ant

Autotools

Bundler

CMake

Ivy

Jam

Makefile

Maven

Rake

SCons

(b) Build change size.

●

●

●

●

●

● ● ● ●

●

●

●

●

●

●

●

●

●

●1

2

3

1 2 3 4 5 6 7 8 9 10 11 12
Month number

R
an

k

Build Technology

●

●

Ant

Autotools

Bundler

CMake

Ivy

Jam

Makefile

Maven

Rake

SCons

(c) Build churn volume.

Fig. 20 Monthly build commit proportion, sizes, and churn volume in the studied forges.

48 Shane McIntosh et al.

●● ● ●

●

●● ●● ●●

1

2

3

1 2 3 4 5 6 7 8 9 10 11 12
Month number

R
an

k

Build Technology

●

●

Ant

Autotools

Bundler

CMake

Ivy

Jam

Makefile

Maven

Rake

SCons

(a) Logical coupling.

●● ● ●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●1

2

3

1 2 3 4 5 6 7 8 9 10 11 12
Month number

R
an

k

Build Technology

●

●

Ant

Autotools

Bundler

CMake

Ivy

Jam

Makefile

Maven

Rake

SCons

(b) Build author ratio.

Fig. 21 Monthly source-build coupling and build author ratios in the studied forges.

	Introduction
	Build Technology Paradigms
	Research Questions
	Approach
	Build Technology Adoption
	Build Maintenance
	Build Technology Migration
	Threats to Validity
	Related Work
	Conclusions
	Build Technology Examples
	Additional Build Maintenance Figures

