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Abstract—The “free app” distribution model has been ex-
tremely popular with end users and developers. Developers use
mobile ads to generate revenue and cover the cost of developing
these free apps. Although the apps are ostensibly free, they in
fact do come with hidden costs. Our study of 21 real world
Android apps shows that the use of ads leads to mobile apps
that consume significantly more network data, have increased
energy consumption, and require repeated changes to ad related
code. We also found that complaints about these hidden costs
are significant and can impact the ratings given to an app. Our
results provide actionable information and guidance to software
developers in weighing the tradeoffs of incorporating ads into
their mobile apps.

Index Terms—Mobile advertisements, mobile devices

I. INTRODUCTION

Mobile advertising has become an important part of many
software developers’ marketing and advertising strategy [1].
This development has come about in just a matter of a few
years. In 2010, the mobile advertising industry’s revenue was
just over half a billion dollars [2], but by 2013 it reached over
17 billion dollars [3], and in the first quarter of 2014, had
already reached over 11 billion dollars [4]. By 2017, analysts
predict that revenue from mobile advertising will exceed that
of TV advertisements [5] and account for one in three dollars
spent on advertising [6].

The presence of mobile ads has become pervasive in the app
ecosystem with, on average, over half of all apps containing
ads [7]. This has been driven by the development of large
scale advertising networks, such as Google Mobile Ads and
Apple iAD, that facilitate the interaction between developers
and advertisers. To earn ad revenue, developers display ads in
their apps by making calls to APIs provided by an advertising
network. When the ads are displayed on an end user’s device,
the developer receives a small payment. A typical business
model for a developer is to place ads in their apps and then
release the app for free with the hope that the ad revenue will
offset the cost of the app’s development. In general, this model
is perceived as a win-win situation for both developers and
end users: developers receive a steady, and sometimes large,
ad-driven revenue stream, and end users receive a “free” app.

A key problem in this model is that it depends on the
perception that, aside from app development, there are no

additional costs to either the end user or software developer.
While this is true for direct costs, this fails to account for
the indirect hidden costs of embedding mobile ads in an app.
On the end users’ side, indirect hidden costs come in several
forms: loading ads from a remote server requires network
usage, for which many users are billed by the amount of bytes;
loading and rendering ads requires CPU time and memory,
which can slow down the performance of an app; and finally,
all of these activities require battery power, which is a limited
resource on a mobile device. Developers have hidden costs
as well. It is necessary to maintain the code that interacts
with the advertisements, which requires developer effort. The
ratings and reviews a developer receives can also be affected.
Studies have shown that over 70% of users find in-app ads
“annoying” [8] and such users may give an app a lower rating
or write negative reviews. This negative response may then
affect the number of downloads of an app, which in turn can
affect the developer’s future ad revenue.

In this paper we present the results of our investigation into
the hidden costs of mobile advertising for software developers.
To carry out this investigation, we performed an extensive
empirical analysis of 21 real world apps from the Google Play
app store that make use of mobile advertising. Our analysis
considered five types of hidden costs: app performance, energy
consumption, network usage, maintenance effort for ad-related
code, and app reviews. The results of our investigation show
that there is, in fact, a high hidden cost of ads in mobile apps.
Our results show that apps with ads consume, on average: 48%
more CPU time, 16% more energy, and 79% more network
data. We also found that developers, on average, make ad
related changes in 23% of their releases. The presence of
mobile ads also has a rating and review cost, as we found
that complaints related to ads and these hidden costs were
relatively frequent and had a measurable impact on an app’s
rating. Overall, we believe that these findings are significant
and will help to inform software developers so they can better
weigh the tradeoffs of incorporating ads into their mobile apps,
understand the impact ads have on their end users, and improve
end users’ app experience.



II. MOTIVATION

Ads occupy a unique position in the mobile app ecosystem.
Strictly speaking, they are not required for the correct func-
tioning of an app. Yet they are essential for monetizing the app
and ensuring that developers can profit from their work. When
considering their profit, developers typically assume that the
only cost they have associated with the app is development and
normal maintenance. Conversely, end users typically assume
that their only cost comes in the form of viewing ads and,
perhaps, paying an upgrade fee to get an ad-free version.
At some level, these are reasonable assumptions, since these
costs, or lack thereof, are clearly visible to both parties. As
we argue in Section I, there are, in fact, other costs. We refer
to these as hidden costs because for both parties they can go
unnoticed, and even if recognized as costs, can be difficult
to quantify without additional infrastructure and analysis. In
this paper, we perform a systematic investigation to quantify
five such hidden costs. Three of these directly affect the end
user’s mobile device: network usage, energy consumption,
and app runtime performance. Two of them more directly
affect developers: ad-related maintenance and user ratings. We
chose to investigate these specific hidden costs because they
represent categories for which we have identified a process for
measuring their costs and also quantifiable ways of showing
their impact on both developers and end users. Below we
formally present our research questions (RQs) with respect to
these hidden costs and motivate their inclusion in our study.

RQ 1: What is the performance cost of ads?
Mobile apps display ads by using ad network provided

APIs. As with all other invocations, executing these methods
requires the device to commit processing power (e.g., CPU)
to carry out the ad related functionality. The consumption of
this processing power by the ad libraries represents processing
power that could have been available to the app to improve
its own performance. Runtime performance is important to
end users because it influences how “fast” or “responsive”
they perceive an app’s implementation to be. In this research
question, we focus on the runtime performance of an app and
how this is affected by the additional processing necessary to
carry out ad related functionality.

RQ 2: What is the energy cost of ads?
Mobile devices are energy constrained devices because they

run on battery power, which is limited. Therefore, energy
efficiency is an important concern for apps that run on mobile
devices. Components, such as display and network, are two
of the most energy consuming components on a mobile de-
vice [9], [10]. These two components also serve an important
role in the mobile ad ecosystem since they are used to retrieve
and show ads. In this research question we quantify the energy
impact of ads in mobile apps. This energy cost is hidden to
users because, although they are aware of battery limitations,
they do not have any way to isolate and evaluate the energy
cost of the ad functionality which is embedded in the mobile
app. A high energy cost is impactful because running out

of battery power renders a device unusable or requires extra
recharging cycles.
RQ 3: What is the network cost of ads?

Network access plays an essential role in the ad network
infrastructure. Developers insert invocations to ad network
APIs that then send requests to ad servers for an ad to display.
In turn, the ad servers transmit advertising content back to
the mobile apps to be displayed. All of these require network
usage by the mobile device, even if the app containing the
ad does not require network access itself. In many cases,
network usage has a cost for end users who must pay for
Internet access or pay data charges for data access over a
certain preset limit. Although there is a direct cost associated
with network usage, end users lack visibility into how network
is consumed. At best, they may use tools, such as Shark or
Root [11], to monitor their apps’ network usage, but do not
have any mechanism to distinguish how much of this usage is
related to ads. Therefore, this remains a hidden cost to them.
RQ 4: What is the rate of app updates related to ads?

Part of the development cost of an app is maintenance. This
includes responding to bug reports, adding new features, and
evolving the app due to changes in the underlying OS and
platform. Prior work has shown that app developers frequently
add, remove, or update ad related code in an app [7], [12]. This
finding suggests that there may be a high maintenance cost
associated with the use of ad libraries. This motivates further
investigation to determine how much maintenance effort is
caused by the use of ad libraries. In this research question, we
examine ad-related code in the apps and track its evolution
over different app versions in order to isolate the ad related
maintenance effort.
RQ 5: What is the impact of ads on an app’s ratings?

The Google Play app store allows users to write reviews
and provide a rating (between one and five stars) for the apps
that they have downloaded. Good app ratings and reviews are
essential for the success of an app in the marketplace. Prior
research has shown that app ratings are highly correlated with
app downloads [13]. Prior work has also shown that surveyed
end users generally have unfavorable perceptions of ads in
mobile apps [14], [15], [16]. Therefore, it is possible that these
unfavorable reactions carry over and influence end users to
give poor reviews for the app. In this research question, we
examine end user reviews and determine what the possible
impact of mobile ads is on the rating of an app.

III. CASE STUDY DESIGN

The goal of our case study is to investigate the hidden cost of
mobile advertisements to end users and software developers.
To carry out this investigation we designed a case study to
capture and analyze ad-related information and various other
types of runtime metrics. In this section we explain how we
selected the apps for the study, the process for identifying
and instrumenting ad behavior, the creation of repeatable and
automatically replayable workloads, and the monitoring and
analysis framework. We explain each of these aspects of the
case study design in more detail below.



A. Selection of Subject Applications

For our case study, we had five criteria for selecting the
set of subject applications. These were: (1) successful apps
— indicating that the developers had found a balance of
functionality and ad usage; (2) representative of different
categories of apps — to enable our results to generalize to a
broader pool of apps; (3) actively maintained with frequent
releases — so we could examine maintenance costs over
time; (4) use of mobile ads; and (5) convertible to and from
Java bytecode using the dex2jar [17] tool — since we need
to perform bytecode manipulation of the apps’ classes to
facilitate the monitoring and analysis.

To obtain apps that met the first two criteria, we took the
top 400 apps in each of the 30 categories of Google Play as
ranked by Distimo [18], an app analysis company that ranks
apps based on user rating, number of downloads, and other
measures of success. Not all categories had 400 apps in the
list of top apps. Therefore in the end we had a list of 10,750
apps from all 30 categories of Google Play. We crawled the
Google Play app store everyday using a farm of systems for
eight months (from Jan 2014 to Aug 2014), to download every
new release of the app and its associated meta-data, such as
average user-rating, number of users rating the app, and user-
reviews (500 at a time), among other things. To satisfy the third
criteria, we sorted the 10,750 apps by the number of releases
that each app had in the time frame of data collection (from
Jan 2014 to Aug 2014). Then, we selected the top 21 apps from
this list, which represented 14 different categories of apps (e.g.,
travel, media, etc.). To satisfy the fourth criteria, we identified
the apps in the corpus that made use of the Google Mobile
Ads (GMA) network. We identified an app as making use of
the GMA if it contained invocations of APIs provided by the
GMA and had visible ads displayed in some part of the user
interface. We focused our investigation on only one ad network
to control for variability of costs between ad networks and
chose GMA in particular because it is the most popular and
widely used, representing over 46% of the mobile ad business
for the first quarter of 2014 [3]. Finally, we converted each
app to Java bytecode, using dex2jar, repackaged it using the
Android SDK tools, and then manually verified that it executed
without failure to ensure it met the fifth criteria. Descriptive
information about each of these apps is shown in Table I. In
this table we list the app’s name, provide it with a unique ID
that we use to identify it in the evaluation graphs, its package
name, physical size of the app’s APK file, and the category
assigned to it by the Google Play app store. We also include
the number of versions, the number of reviews, and the average
rating of each app for the time period between January 2014
and August 2014.

B. Instrumentation of the Subject Applications

To address the research questions outlined in Section IV
requires that we have two versions of each app, one with
ads and the other without. To create the no-ads version of
an app, we used instrumentation based techniques to remove
all invocations of APIs defined by the ad network. Note that

some prior approaches have simply replaced the ad library
with “dummy” implementations [19]; however we chose to
completely remove the invocations since there is a non-zero
time and energy cost associated with even an invocation of an
empty method [20], [10]. To perform the instrumentation, we
first converted each app’s APK into the corresponding Java
bytecode using dex2jar. Then we used the ASM library [21]
to analyze the bytecode of each class of each app and identify
ad-related invocations. These invocations could be identified
by matching the package name (e.g., “ads”, “mobileads”, and
“mobads”) of the invocation’s target method with that of
known ad networks. The package names of ad networks can
be found by examining their API documentation. For each
ad-related API invocation identified, we wrote instrumentation
code to remove the invocation and, where possible, any other
support objects created as arguments to the invocation. In
some cases, it was not possible to remove all references
to the ad library. Namely, if an invocation unrelated to ads
had an ad-related argument, then we could not remove the
initialization of that argument. In our subject apps there
were 141 such problematic invocations, out of a total of 716
ad-related invocations. After instrumentation, we repackaged
the app and then verified the removal of the ads with two
checks. First, we manually executed the apps and verified that
there were no visible ads. Second, we used tcpdump on the
smartphone’s local network to see if there were any signs of an
ad API accessing the network. To create the version of the app
with ads, we decompiled, then repackaged each app, without
removing the ads. We did this to control for any bytecode
level transformations introduced by dex2jar, asm, or dx, which
would have also occurred to the no-ads version.

C. Generation of Subjects’ Workloads

For each app, we created workloads to execute the app
and exercise its functionality. The goals for each workload we
created were: (1) complete as possible with respect to the app’s
primary functions; (2) repeatable across multiple executions
of the app; and (3) long enough to ensure several ad reload
cycles.

To generate workloads, we leveraged the RERAN tool [22].
This tool records a user’s interaction with an app as a series
of events and can then replay these events at a later time. To
generate an initial workload, we interacted with each app and
tried to invoke as much functionality as possible. For example,
we clicked the different buttons or labels on a screen, stayed
for some time on a new page, returned or went to another new
page, and entered values for text and search boxes. Although
these workloads may not be representative of realistic usage,
they provide us with a more or less complete coverage of
the apps’ key functions. On average, we interacted with each
app for 1.5 – 4 minutes. This amount of time was chosen
because GMA can be set to refresh every 30 – 120 seconds
and with this interaction length we would ensure several ad
reloads. After creating an initial workload, we repeated the
execution of the workload several times and manually verified
that the execution of the app was deterministic with respect to



TABLE I: Subject applications

ID App Name Package Name Category Size (MB) # Versions # Reviews Avg. Rating

M1 Restaurant Finder com.akasoft.topplaces travel & local 3.7 24 464 4.35366
M2 Smileys for Chat (memes,emoji) com.androidsx.smileys communication 15.9 16 613 4.32011
M3 Arcus Weather com.arcusweather.darksky weather 2.8 30 513 4.32317
M4 Polaris Navigation GPS com.discipleskies.android.polarisnavigation travel & local 7.8 29 960 4.41557
M5 3D Sense Clock & Weather com.droid27.d3senseclockweather travel & local 10.7 20 399 4.42509
M6 Drudge Report com.iavian.dreport news & magazines 1.5 20 1317 4.24225
M7 Podcast Republic com.itunestoppodcastplayer.app news & magazines 3.6 39 1723 4.58928
M8 Followers For Instagram com.noapostroph3s.followers.instagram social 2.4 17 1337 3.75924
M9 Public Radio & Podcast com.nprpodcastplayer.app news & magazines 3.2 21 671 4.2379
M10 English for kids learning free com.oman.english4spanishkids education 8.0 21 90 4.13483
M11 Lomo Camera com.onemanwithcameralomo photography 29.5 20 942 4.33325
M12 Smart Booster - Free Cleaner com.rootuninstaller.rambooster tools 3.5 22 1258 4.50653
M13 Pixer com.sixtyphotos.app social 4.4 27 599 4.36689
M14 The Best Life Quotes com.socialping.lifequotes entertainment 2.6 31 784 4.42554
M15 SofaScore LiveScore com.sofascore.android sports 9.9 39 1158 4.72082
M16 Player dreams com.team48dreams.player music & audio 1.9 40 693 4.40827
M17 VLC Direct Streaming Pro Free com.vlcforandroid.vlcdirectprofree media & video 2.3 25 868 4.28025
M18 Translator Speak & Translate com.voicetranslator.SpeakAndTranslateFree travel & local 5.3 22 1024 4.38482
M19 7Zipper org.joa.zipperplus7 communication 7.6 19 699 4.66026
M20 Guess The Song quess.song.music.pop.quiz trivia 19.5 40 3426 4.62825
M21 Radaee PDF Reader radaee.pdf productivity 4.6 21 587 4.41044

the sequence of actions and identified any system state (e.g.,
resetting system settings and killing service related processes)
that needed to be restored prior to the replay of the interaction.
In many cases, the execution of the no-ad version would
require a systematic shift of the X and Y coordinates of certain
user events (e.g., a touch), due to the absence of a displayed
ad, and we corrected the RERAN traces at this time.

D. Monitoring and Analysis of Subject Applications
To collect runtime data on the hidden costs, we ran both

versions of each app (with ads and no-ads) while monitoring
its execution. The mobile device we used was the Samsung
Galaxy SII smartphone with a rooted Android 4.3 operating
system. For each version, we first restored the system envi-
ronment to its original state. Then we loaded the app on the
mobile device and started its execution. Before beginning the
replay, we allowed the system to sleep for 15 seconds to ensure
that the initial page had completely loaded and displayed. Then
we began the RERAN replay. During the replay execution of
the app, we recorded statistics about the execution. This pro-
cess was repeated four times for each experiment to minimize
the impact of background noise, and in each iteration, the
order of the apps and both versions was changed. The specific
statistics and measurements taken during the execution varied
according to the addressed research question. We elaborate on
the measurements and metrics for each research question in
Section IV.

IV. RESULTS AND DISCUSSION

In this section we discuss the details of the experiments we
carried out to address each of the RQs defined in Section II.
For each RQ, we describe the approach we employed to
capture the relevant metrics and measurements, present the
results we obtained, and discuss the implications of these
results with respect to each of the RQs. Essentially, each of
the subsections in this section describes the monitoring and
analysis portion of our case study (Section III-D) as it was
customized to address the RQs.
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Fig. 1: Relative performance cost of the with-ads version over
the no-ads version.

A. RQ 1: What is the performance cost of ads?

Approach: To determine the performance cost of mobile ads,
we measured two performance metrics, CPU utilization and
memory usage, on both the with-ads and no-ads version of
each app. To obtain these metrics, we ran the standard top
utility on the mobile device while it was executing both app
versions. We set the top tool to record the two performance
metrics on a one second interval. Specifically, top recorded
the CPU percent utilization and the amount of memory in the
Resident Set Size (RSS), which indicates how many physical
pages are associated with the process. Since the running app
was the only one that had a process foreground visible during



the replay, the RSS reflected the physical pages of the app’s
process. We then calculated the average value of the metric
for each app. Note that even though running top can affect the
mobile device’s performance, we verified through experiments
that the effect of top was consistent across app executions and
versions.
Results: The results of these experiments are shown in Fig-
ure 1. The dark red bar shows memory usage and the light blue
bar shows CPU utilization. Each bar in this graph represents
the percent difference between the performance metrics for
the with-ads and no-ads versions listed along the X axis. A
positive number means that the with-ads version had a higher
value for the metric. As the results show, the with-ads version
had a higher performance cost for all of the subject apps.
The median memory increase was 22% and the median CPU
utilization increase was 56%.
Discussion: Overall, the results show a markedly higher
resource consumption for apps with mobile ads. We expect that
this result is due, in part, to managing the increased network
usage that we find is associated with ads in Section IV-C. We
also expect that retrieving and updating ads occurs when an
app might otherwise be in an idle state waiting for a user
event. Mobile apps actually spend a significant amount of
their perceived runtime in an idle state [10]. Therefore, even
the addition of a small amount of activity, such as managing
ad interactions, can lead to a surprisingly large increase in
CPU utilization. Case in point, in our experiment the median
with-ads and no-ads actual CPU utilization was 20% and
7%, respectively. We hypothesized that the increase in CPU
utilization was also likely to indicate that end users would
experience a slow down in response time. To evaluate this,
we instrumented the Android event handlers and activities for
a subset of the subject apps using an instrumentation tool
we had developed for Android apps in prior work [23], [20],
[24] that is based on the efficient path profiling technique by
Ball and Larus [25]. We were unable to instrument all of the
apps because the tool used BCEL, which was limited in its
ability to process some of the apps’ bytecodes. Nonetheless,
using this tool we were able to instrument and measure the
execution time of eight with-ads and no-ads versions. We
found that, on average, the with-ads versions took 7% longer
to complete their event handling and activities. This suggests
that including mobile ads has a measurable impact on the level
of responsiveness of the app.

B. RQ 2: What is the energy cost of ads?

Approach: To determine the amount of energy consumed
by mobile ads, we measured the energy consumption of
each app’s with-ads and no-ads version during the workload
replay. We connected the mobile device to a Monsoon Power
Monitor (MPM) [26], which sampled the energy consumption
of the device at a frequency of 5KHz. Before beginning
the replay, we started the MPM and began recording the
power measurements. Then we noted the time at which the
replay began and ended. The total energy consumption of
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Fig. 2: Energy cost for the with-ads and no-ads versions.

an app was calculated as the sum of all energy consumed
between the beginning and ending timestamp. The difference
between the energy consumption of the with-ads and no-ads
version represented the energy cost associated with running
the mobile ads. Unlike the performance metrics measured
in Section IV-A, we included the energy incurred while the
app was idle. The reason for this is that display represents a
significant portion of an app’s energy consumption and visible
ads are directly responsible for a portion of that display energy.
Note that the MPM is a passive measurement device so it does
not affect the energy consumption of the hardware or mobile
software.

Results: The results of the energy comparison are shown in
Figure 2. For each app along the X axis, the chart shows the
relative energy consumption increase of the with-ads version
over the no-ads version. For all apps, there was always an
increase in energy consumption associated with the with-ads
version. The energy increase ranged from 3% to 33%, with a
median of 15%.

Discussion: For some of the apps, the energy consumption
related to ads is quite high. We found that six apps had an
increase of over 20% in their energy consumption due to their
use of mobile ads. With energy, it is important to note that
a high cost does not directly translate into a high financial
cost. For example, even a 33% energy increase only represents
50 Joules. The cost to recharge a battery with this amount
of energy is negligible. However, a high energy cost can
translate into a usability cost for a mobile device. Consider
the following illustrative scenario. A typical battery for the
Samsung Galaxy SII smartphone contains 2.5 hours of charge.
If the SII was to run only the with-ads and no-adds version
of the app with the median energy consumption, then the



charge would last 2.1 hours instead of 2.5 hours. With the
most expensive ad energy cost, the difference between these
two numbers increases to 1.7 hours. This means that an end
user would have to recharge their phone 33% more often to
compensate for the ads’ energy cost. Overall, this decreased
battery lifespan could impact the usability of a mobile device
as users would have to charge it more often and have a shorter
amount of time in which they could use their phones.
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Fig. 3: Network cost metrics.

C. RQ 3: What is the network cost of ads?

Approach: To address this research question, we collected
measurements of an app’s network usage during the replay
of the app’s workload. The first of these measurements, data
usage, is the total number of bytes sent and received by the
app during the replay, and the second measurement, number
of packets, is the count of network packets sent and received
by the app during the replay. To obtain these measurements,
we ran tcpdump on the smartphone’s network connection to
record every packet sent and received on the smartphone
during the workload replay. We then analyzed the captured
network trace to compute the measurements. This process was
repeated for the with-ads and no-ads version of each app. We
then calculated the relative difference of both metrics for the
two versions of each app.
Results: Figure 3 shows the results of this experiment. The
Y axis shows the relative difference for each of the apps
listed along the X axis. The light blue bar represents the
percent difference in data usage and the dark red bar represents
the percent difference in the number of network packets. A
positive number indicates that the with-ads version had a
higher value for the measurement. The results show that the
with-ads version always had a higher data usage and packet
count than the no-ads version. For the subject apps, the median

increase in data usage over the no-ads version was 97% and
for packet usage it was 90%. The results also show that the
differences for data usage and package count were generally
within a few percentage points of each other for each of the
apps.
Discussion: Overall, the results show that there is a very high
network cost associated with mobile ads. Moreover, there were
several cases in which the percent increase was 100%, which
indicated that almost all of the network traffic for the app
was due to ads. There were also four apps with relatively low
network cost increases. These four were the heaviest network
users. For example M7 and M20 played songs during their
replay, so the increase due to ads was smaller relative to the
overall network usage of the app. We also analyzed the data
in more detail to better understand the potential impact of the
ad related network traffic. We looked at the impact in terms of
potential cost in dollars and energy inefficiencies. For dollar
cost, we calculated the median absolute increase in network
usage, which was 243,671 bytes and multiplied this by the
average cost per MB of a major US based carrier (AT&T),
which was $.07 in 2013 [27]. From this we determined that
each execution of the with-ads version could potentially cost
end users $0.017 more in terms of network charges. Although
this type of cost would only apply in situations where users
were paying for metered data; we note that in the case of
data overage charges, this would be the amount that could
be directly attributed to the ads. With regards to energy
inefficiency, mobile devices are energy-inefficient when they
send packets that are smaller than the maximum packet size.
This is because there is a fixed overhead for sending packet
headers, which is amortized over larger packets sizes [28]. So
we looked at the average percentage of packets involved in
communication with the ad networks that were smaller than
the maximum size packet and, therefore, were suboptimal with
respect to energy usage. For this analysis, we focused on the 16
apps that had almost all (over 80%) of their network traffic due
to advertisements, so we could more accurately characterize
only ad-related traffic. We also excluded all TCP control-
related packets (e.g., SYN and ACK packets). We calculated
this number for both the with-ads and no-ads version, and
then subtracted the no-ads count from the with-ads count to
isolate the number of suboptimal sized packets that were due
just to ad traffic. The results of this analysis indicate that for
these apps, over 10% of the advertising traffic was within this
size range and, therefore, making sub-optimal use, energy-
wise, of the network resources. Taken together, the results
of these additional analyses show that the increased network
usage of embedded ads can also result in real dollar costs
for end users and often represents an energy-inefficient use of
network resources.

D. RQ 4: What is the rate of app updates related to ads?

Approach: Our goal in this research question is to determine
the cost, in terms of maintenance effort for the developer, of
including ads in the apps. Since, we do not have the develop-
ment history or the source code repository of the subject apps
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Fig. 4: Percentage of releases that included ad-related main-
tenance.

used in our case study, we approximate maintenance effort
as the number of releases of the app in which a developer
performed ad library related changes in their apps. Note that
this metric does not imply that a release was only related
to an ad-related change, only that the release includes ad-
related changes. For every release of each app, we decompiled
the release and extracted the calls to the GMA network. For
each app, we determined if the ad related calls were different
from one release (Releasei) to the next (Releasei+1). We
defined different by treating the collection of ad related calls
as a multiset of tuples, where each tuple was comprised of
the containing method of the call and the target method of
the call. If there was a difference in the two multisets, then
we concluded that there was an ad related change occurring
between those two releases. Note that our definition does not
include simple changes, such as a call changing in location
within its original method. We performed this analysis for all
releases of all apps to determine how many versions of the
app had ad related changes.

Results: In Figure 4, we report the ratio of the number of
app versions that had ad related changes to the number of
app versions that have been released. Overall, the median
value for this metric was 22%. This indicates that half of
the subject apps had ad related changes in almost one of
every four releases. We also found that this metric had a
wide range. For example, the app com.akasoft.topplaces and
com.voicetranslator.SpeakAndTranslateFree had an ad related
change in every other release. While at the other end of the
spectrum, radaee.pdf did not have any ad related changes in
its 21 releases.

Discussion: Our results found that a considerable portion of
releases had ad related changes. This was counter-intuitive
as the ad network libraries are generally straightforward to
use and stable. So we investigated our results further to try
and understand the reason we saw such high numbers. First,
we compared the number of ad related changes against the
number of updates that had been performed to the GMA
network libraries in the same time period. We determined the
update number to be five by looking at the release history
of the GMA library. Of the subject apps, there were 11
that had either the same number or fewer number of ad
related changes, which could offer a possible explanation for
their changes. However, there were still 10 apps that had a
higher number of ad related changes. By investigating the
reviews, we found another possible explanation, that users
were reacting negatively to ad related changes in the apps and
developers were responding to these complaints by modifying
ad related behavior. For example, one of the users of the app
com.discipleskies.android.polarisnavigation, wrote a one star
review for the app, stating: ‘Last update full of annoying ads.
Don’t update.’. Polaris was also one of the apps above both the
median and average number of ad related changes. Similarly,
one user of the app com.noapostroph3s.followers.instagram
complained (in a one star review) that ‘The update didn’t fix
any bugs it only added ads!!!’. This app also had a higher
than average percentage of its releases involve ad related
changes. We also note findings by Khalid and colleagues [29],
reporting that 11% of all user complaints in their subject apps
occurred immediately after updates. We hypothesize that app
developers may be changing their apps’ ad related behavior
to possibly increase ad revenue, and then adjusting the ad
behavior in response to user complaints. In future work, we
plan to investigate this hypothesis using more sophisticated
static analysis based code change techniques. Regardless of the
reason behind the ad related changes, it is important to note
that maintenance is an expensive part of the software lifecycle
and code that results in higher than expected maintenance
efforts can represent a hidden cost to the developer.

E. RQ 5: What is the impact of ads on an app’s ratings?

Approach: To address this research question we investigated
the impact of ads and hidden costs on the reviews of the
app. To gather the review and rating information, we crawled
the Google Play app store and collected the reviews for each
of the subject apps on each day between January 2014 and
August 2014. Since Google Play only allowed us to retrieve
500 user reviews per day, we retrieved up to 500 reviews on
the first day and then, on each subsequent day, retrieved all of
the latest reviews (up to 500). Thus if an app got fewer than
500 reviews, we were able to retrieve all of the reviews, but
if there were more than 500 reviews, then we only got 500
of the most recent. In total, we collected 20,125 reviews for
the subject apps. Of these reviews, we only considered the
one and two star reviews, since they have been shown, via
sentiment analysis, to reflect user complaints [30]. This gave
us 2,964 reviews. We then analyzed the reviews to determine if



any of them had keywords related to ads (regex = ad/advert*)
or any of the hidden costs defined in RQ1–3 (regex = pow-
er/drain/recharg*/battery/batery/network/bandwidth/slow/hang).
We chose these particular keyword variations based on our
prior experience in manually examining user reviews for
different types of user complaints [29].
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Fig. 5: Complaints about ads and the hidden costs.

Results: In Figure 5 we present the percentage of one and
two star reviews where users complain about ads or one of
the hidden costs. Only two apps (com.androidsx.smileys and
com.socialping.lifequotes) had no ad related complaints and
all apps had complaints related to at least one of the hidden
costs. Overall, over 50% of the apps had at least 3.28% of
their user complaints dealing with ads and 5.04% dealing
with hidden costs defined in RQ1–3. These numbers should be
considered a lower bound since we only considered complaints
that explicitly mentioned one of the keywords and it is possible
we did not consider all possible ways to complain about a
particular topic.
Discussion: In an absolute sense, the percentage of complaints
about either ads or one of the hidden costs may appear small.
However, findings by Khalid and colleagues [29] put these
numbers into context. In their work they found 12 categories
of user complaints by manually analyzing the reviews from
20 iOS apps. They also found that seven of the 12 complaints
had an occurrence frequency less than 3.28%. Therefore, we
consider the complaint occurrences of ads and hidden costs
to be higher than average. One might wonder if the costs
are indeed hidden since they have a higher than average
number of complaints about these topics, but it is important
to note that these reviews together comprise only a little more
than one percent of all of the reviews and, as such, are not
likely to register with the developer. Nonetheless, they do
have a measurable, albeit small, impact on the ratings. We

recalculated each app’s new rating if the reviews complaining
about either ads or one of the hidden costs were to be removed.
The average increase in rating would be about .003 stars. Here
again, this is a small number, but it should be noted that a .003
change is sufficient to change even the ranking of several of
our subject apps if they were ranked by rating.

We also performed a manual investigation of the complaints
in order to better understand the nature of the complaints. We
found that an overwhelming amount of the reviews were about
the interference of the ads with the UI of the app (53% of all
the reviews related to ads). Specifically, users complained that

• there were too many ads (e.g., for app
com.akasoft.topplaces, where a user says - ‘Too
much adverts’),

• the ads were too big or took up too much of the screen
space (e.g., for app com.akasoft.topplaces, where a user
says - ‘Annoying full screen ads every time you run the
app. Uninstall’)

• the ads blocked essential functionality (e.g., for app
com.onemanwithcameralomo, where a user says - ‘Ads
right in the middle of my photos uninstalling’)

Therefore, we conclude that, in specific, ad placement within
the UI can cause many negative reviews and should be a
developer concern when adding ads to their apps.

The next most frequent complaint from the users about ads
is having ads in the app even after getting a paid-for version of
the app (28% of all reviews related to ads). More specifically,
users complained when

• they paid for an app (e.g., for app
com.noapostroph3s.followers.instagram)

• they downloaded a paid version for free as part of a
promotion (e.g., for app com.onemanwithcameralomo)

• they referred the app to other users (e.g., for
com.sofascore.android)

Therefore, we conclude that the presence of ads in paid-for
versions of an app is a trigger for complaints. Developers
should carefully weigh the benefits of extra ad revenue versus
the possibility of upsetting paying customers.

We also noticed several interesting trends
for different apps. The users of the apps
com.discipleskies.android.polarisnavigation and
com.sixtyphotos.app thought that the ads were very intrusive.
In this case, the apps displayed ads even after the app was
closed. Finally, one user in one app (radaee.pdf) directly
complained about the power consumed by the ads. In our
results in Section IV-B, we found that this app had an
approximate energy cost of 20%. There were five apps with
higher energy costs that did not receive any such complaints,
suggesting that such costs, although high, are indeed hidden
to the end user.

V. GENERALIZABILITY

As described in Section III-A, we chose only apps that
used the GMA. While this helped to control for ad network
variance, it raises a possible threat to the external validity



TABLE II: Generalizing RQ 1-5 for four apps with two other
mobile ad networks

(21 apps with GMA) (AMA+GMA) (MMA+GMA)
Metric (RQ) Min Median Max G1 G2 G3 G4

CPU (1) 6 56 84 43 43 27 26
Memory (1) 3 22 37 15 25 14 21
Energy (2) 3 15 33 20 15 20 17
Bytes (3) 4 97 100 14 70 62 28
Packets (3) 5 90 100 12 78 61 29
Updates (4) 0 22 50 18 17 24 31
Complaints (5) 0 3.28 11 1.85 0 2.47 7.61

(generalizability) of the results. In a small study, we evaluated
whether the results we described in Section IV held for
other ad networks as well. Therefore we chose two other
popular ad networks — Amazon Mobile Ads (AMA) and
Mopub Mobile Ads (MMA).1 We then chose two apps for
each mobile ad network with the same criterion as our sub-
ject apps (i.e., successful apps that are actively maintained).
These apps are: G1: com.bambuna.podcastaddict (AMA +
GMA), G2: com.x2line.android.babyadopter.lite (AMA +
GMA), G3: com.fivemobile.thescore (MMA + GMA) and G4:
com.slacker.radio (MMA + GMA). Each of these four apps
had their respective new ad networks and the GMA (we could
not find apps that had only other ad networks and not GMA).
We then repeated our experiments for all five of our research
questions on these four apps.

Table II shows the results for these four apps. To place
them in context we show the minimum, median and maximum
values for the corresponding results of the GMA apps. We
find that in some cases the results for the four new apps are
similar to the median value, such as the memory cost in RQ1.
For other questions, such as the network costs in RQ3, the
results for G1 (14% and 12%) and G4 (28% and 29%) are
far from the median values of 97% and 90%. However, for all
the questions, the results for the four new apps are between
the minimum and maximum values. This shows that the apps
with other ad networks do not have costs significantly better
or worse than apps that have only GMA. Therefore we can
be more confident that our results and conclusions may be
applicable to other ad networks as well.

VI. THREATS TO VALIDITY

In this section, we discuss the threats to validity of our study
and explain the steps we took to mitigate those threats.

External Validity: The results and conclusions of our case
study were based on a set of 21 Android apps. Since this
set size is significantly smaller than the population of all
Android apps, this could impact the generalizability of the
conclusions. To mitigate this threat, we ensured that all apps
were real-world apps downloaded from the official app store
for Android apps, i.e., the Google Play app store. Additionally,
these apps represent popular and successful apps, have a high
ranking via the Distimo listing, a high numbers of versions,

1Mopub can be considered an ad mediation service [31], but serves as an
ad network for the purpose of our study.

and represent 14 different categories of apps. Nonetheless,
we acknowledge several limitations to the generalizability of
our results. First, our work targeted only Android apps, so
the results may not generalize to iOS based apps, which
also represent a significant portion of the app marketplace.
However, we expect that since the underlying mechanisms of
ad display are similar, we would see similar results. Second,
we biased our app selection for popular and successful apps.
It is possible that less successful apps may have a different
hidden cost. We hypothesize that since these apps are less
successful, it is likely that they have higher hidden costs, so
our results would represent a lower bound on the average
hidden costs. However, exploring this hypothesis is something
we intend to do in future work.

Internal Validity: In our study, we used different tools or
commands to measure each metric on the smartphone. We
chose standard tools that have been used in previous research
studies. To ensure the reliability of our results, we repeated
measurements four times. Below we present details about the
tools and the steps we took to mitigate specific threats to
internal validity.

First, we instrumented Java bytecode which was generated
from Dalvik bytecode by reverse engineering. The dex2jar,
asm, and dx tools may introduce differences on the instru-
mented version from the original app. To address this threat,
we ran the tools on both versions (with-ads and no-ads) so
that any effects would be consistent.

Second, we used RERAN to record and replay workloads
in our experiments. However, it is difficult to execute two
versions (i.e., with-ads and no-ads) of an app in exactly the
same environment. To mitigate the effects of the environment
on the final results, we adopted different strategies as we
described in Section III. We measured the cost of mobile
ads through several groups of runs for each app. The average
time difference between two consecutive runs under the same
workload was 0.32%, with the highest value being 0.78%,
which is negligible compared to the total duration of each
run. This indicates that, for the most part, we were able to
maintain similar execution environments for the apps’ replay.

Construct Validity: The goal of our study is to measure
the hidden cost of mobile ads. We investigated this by defining
and measuring several metrics for end users and developers.
In Section III, we explained why we chose these metrics.
However, the relative importance of these metrics may vary
in different usage and development contexts, and it is likely
that there are other cost metrics, not addressed in our work,
that may be important in other settings. Thus, the cost of ads
presented in this paper is a lower bound. We hope that this
work will encourage further identification and quantification
of additional hidden costs.

Content Validity: Our experiments and conclusions assume
that developers would want to minimize costs to end users. An
intriguing question and threat to the validity of our conclusions
is that developers may disregard these costs in order to drive
end users to paid ad-free versions of their apps. Related work
has shown that paid versions of apps have significantly lower



costs in terms of network usage [32]. However, it is not clear
if this is intentional and developers must still strike a balance
between ad placement and the quality of the user experience
to avoid driving away potential paying customers.

VII. RELATED WORK

In this section we present related work focused on different
aspects of mobile advertisements. We discuss four areas of
related work and the overlaps and differences of the related
work with our work.
Cost of mobile ads: Broad empirical studies [7], [12] find
that ad library updates in mobile apps are frequent, and certain
specific ad libraries can result in poor app ratings. However,
the hidden costs of mobile ads regarding the maintenance
of ad libraries and app ratings are not investigated. Wei and
colleagues [32] quantify the network usage and system calls
related to mobile ads, based on carefully constructed rules,
and quantify the difference between free and paid versions.
Vallina-Rodriguez and colleagues [31] conduct an in-depth
analysis on the characteristics of mobile ads from traffic traces
of a major European mobile carrier with over three million
subscribers. They use a custom-built app with an ad slot at
the bottom of the screen for the evaluation of the energy
consumption of three popular ad networks. Nonetheless, only
pure ad traffic is evaluated with respect to the energy cost and
the impact of background traffic is unknown. Other related
works give a high level picture of how users respond to mobile
ads, in contrast, our work studies this topic through ad libraries
within apps. Different methods or models [14], [15], [16] are
proposed to identify factors that influence consumers’ response
to mobile ads. However, these studies are based on users’
feedback in surveys. In contrast to the above studies, which
look at one or two types of ad related costs for mobile apps,
our work investigates five different costs for 21 apps from the
Google Play app store.
Improving mobile ads: Mohan and his colleagues [19] pro-
pose an ad prefetching system to reduce ad energy overhead.
They present an approach to prefetch mobile ads with a
negligible revenue loss. Shekhar and colleagues [33] pro-
pose AdSplit, which guarantees protection and integrity to
advertisers by separating mobile ads from applications. They
evaluate the performance of AdSplit, but do not focus on the
performance cost of mobile ads. Khan and colleagues [34]
propose an ad delivery framework, which predicts user context
to identify relevant ads. They report a non-negligible amount
of network traffic generated by ads. Vallina-Rodriguez and
colleagues [31] implement a prototype with prefetching and
caching techniques and show an improvement in the energy
consumption and network usage of ads. All of these ap-
proaches focus narrowly on one or more cost indicators and
research on how to improve mobile ads. However, we focus
on evaluating the cost of mobile ads with respect to several
hidden costs.
Other aspects of mobile ads: DECAF [35], SmartAds [36],
and PUMA [37] can detect violations of ad layouts, enable

contextual advertising, and detect ad fraud, respectively. Mo-
bile ads are personalized through attributes, trends [38], and
behaviour [39], etc. Book and colleagues [40] observe a steady
increase in the number of permissions that Android ad libraries
are able to use, after examining a sample of 114,000 apps.
Cost of apps as a whole: Several studies have looked
at how to estimate or measure the energy consumption of
mobile applications [20], [10], [23], [28], [41]. Pinheiro and
colleagues [42] develop systems to address power conservation
for clusters of PCs. Qian and colleagues [43] design ARO, a
tool that exposes the cross-layer interaction among various
layers and profiles resource usage for mobile applications.
eProf [44] uses a power model to report the energy usage of
the various hardware components of mobile device. All these
studies have looked at mobile apps as a whole or the mobile
device. However, in our study we specifically examine the cost
of ads in mobile apps.

VIII. CONCLUSION

Millions of smart phone users install and use thousands of
free apps, which are often monetized by the developers via
mobile advertisements. In this paper we postulate that the apps
are merely free-to-download and in fact have several forms
of hidden costs due to the ads. We carry out experiments
on 21 highly-rated and actively maintained Android apps to
investigate these costs. We find that the cost of ads in terms
of performance, energy, and bandwidth are substantial. The
median relative CPU, memory, energy, and bandwidth costs
of ads are 56%, 22%, 15%, and 97% respectively. We also
find that 50% of the apps have ad related changes in one out
of almost every four releases, and that 4% of all complaints
in the reviews of the apps in the Google Play app store are
with respect to ads. Although this is an intuitive observation,
such results have not been formally demonstrated and are
hard to quantify without extensive measuring infrastructure.
We believe that our study provides strong evidence of hidden
costs due to ads in apps, and that developers need to optimally
use them in the apps. The take-home message of our study is
that both the research community and the ad library networks
need to take these costs into consideration and to make ads
more cost efficient.
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